लोटनिक गति: Difference between revisions

From Vidyalayawiki

Listen

No edit summary
No edit summary
Line 13: Line 13:
रोलिंग मोशन के लिए बिना फिसले होने के लिए, निम्नलिखित शर्त पूरी होनी चाहिए:
रोलिंग मोशन के लिए बिना फिसले होने के लिए, निम्नलिखित शर्त पूरी होनी चाहिए:


वी = ω * आर
<math>v=\omega * R </math>


कहाँ:
जहाँ:


   v पहिए के द्रव्यमान के केंद्र का रेखीय वेग है,
   <math>v</math> पहिए के द्रव्यमान के केंद्र का रेखीय वेग है,


   ω पहिया का कोणीय वेग (घूर्णन की दर) है, और
   <math>\omega</math> पहिया का कोणीय वेग (घूर्णन की दर) है, और


   R पहिये की त्रिज्या है।
   <math>R</math> पहिये की त्रिज्या है।


यह समीकरण दर्शाता है कि द्रव्यमान के केंद्र का रैखिक वेग सीधे कोणीय वेग और पहिया की त्रिज्या से संबंधित है। यदि वस्तु बिना खिसके लुढ़क रही है, तो रैखिक वेग और कोणीय वेग समानुपाती होते हैं।
यह समीकरण दर्शाता है कि द्रव्यमान के केंद्र का रैखिक वेग सीधे कोणीय वेग और पहिया की त्रिज्या से संबंधित है। यदि वस्तु बिना खिसके लुढ़क रही है, तो रैखिक वेग और कोणीय वेग समानुपाती होते हैं।


संक्षेप में, रोलिंग मोशन ट्रांसलेशनल और रोटेशनल मोशन का एक संयोजन है। जब कोई वस्तु
संक्षेप में,लोटनिक गति ,स्थानांतरीय और घूर्णनात्मक (गति) का एक संयोजन है। जब कोई वस्तु बिना खिसके लुढ़कती है, तो उसके द्रव्यमान के केंद्र का रैखिक वेग सीधे उसके कोणीय वेग और त्रिज्या से संबंधित होता है। यह अवधारणा भौतिकी में विभिन्न परिघटनाओं को समझने के लिए महत्वपूर्ण है, जैसे पहियों, गेंदों और अन्य लुढ़कती हुई वस्तुओं की गति।
[[Category:कणों के निकाय तथा घूर्णी गति]]
[[Category:कणों के निकाय तथा घूर्णी गति]]

Revision as of 10:51, 8 June 2023

Rolling motion

लोटनिक गति (रोलिंग मोशन) एक प्रकार का संयुक्त रूप से स्थानांतरीय (ट्रांसलेशनल) और घूर्णनात्मक (रोटेशनल) गति (मोश)न है। यह तब होता है जब कोई वस्तु बिना फिसले किसी सतह पर लुढ़कती है। यह साधारणतः नित्य उपयोग में आने वाली वस्तुओं जैसे पहियों, गेंदों और सिलेंडरों में देखा जाता है। लोटनिक (रोलिंग) गति में, वस्तु के द्रव्यमान का केंद्र और सतह पर उसके (द्रव्यमान के) बिंदुओं, दोनों में गति होती है ।

लोटनिक गति को समझने के लिए, एक चपटी सतह पर पहिए के लुढ़कने के एक सरल उदाहरण की अवधारणा की जा सकती है। यहाँ मुख्य विचार यह है कि जैसे ही पहिया लुढ़कता है, यह अनुवादात्मक गति (द्रव्यमान के केंद्र की गति) और घूर्णी गति (अपनी धुरी के चारों ओर घूमना) दोनों से गुजरता है।

जब पहिए पर कोई बल लगाया जाता है, जैसे कि उसे आगे धकेलना, तो उस पर दो महत्वपूर्ण बल कार्य करते हैं:

   स्थानान्तरण बल (Translational Force) : इस बल के कारण पहिये का द्रव्यमान केन्द्र एक सीधी रेखा में गति करता है। यह पहिए की स्थानांतरीय गति के लिए उत्तरदायी होता है। इस बल का परिमाण और दिशा लगाए गए बल और पहिया पर कार्य करने वाले किसी भी अन्य बाहरी बल, जैसे घर्षण पर निर्भर करती है।

   घूर्णी बल: यह बल पहिए की घूर्णी गति के लिए उत्तरदायी होता है। जैसे ही पहिया लुढ़कता है, पहिया के केंद्र से उनकी अलग-अलग दूरी के कारण इसकी सतह पर बिंदुओं की गति अलग-अलग होती है। गति में यह अंतर एक बलाघूर्ण बनाता है, जिसके कारण पहिया घूमता है। घूर्णी बल टोक़ और पहिया की जड़ता के क्षण पर निर्भर करता है।

रोलिंग मोशन के लिए बिना फिसले होने के लिए, निम्नलिखित शर्त पूरी होनी चाहिए:

जहाँ:

   पहिए के द्रव्यमान के केंद्र का रेखीय वेग है,

   पहिया का कोणीय वेग (घूर्णन की दर) है, और

   पहिये की त्रिज्या है।

यह समीकरण दर्शाता है कि द्रव्यमान के केंद्र का रैखिक वेग सीधे कोणीय वेग और पहिया की त्रिज्या से संबंधित है। यदि वस्तु बिना खिसके लुढ़क रही है, तो रैखिक वेग और कोणीय वेग समानुपाती होते हैं।

संक्षेप में,लोटनिक गति ,स्थानांतरीय और घूर्णनात्मक (गति) का एक संयोजन है। जब कोई वस्तु बिना खिसके लुढ़कती है, तो उसके द्रव्यमान के केंद्र का रैखिक वेग सीधे उसके कोणीय वेग और त्रिज्या से संबंधित होता है। यह अवधारणा भौतिकी में विभिन्न परिघटनाओं को समझने के लिए महत्वपूर्ण है, जैसे पहियों, गेंदों और अन्य लुढ़कती हुई वस्तुओं की गति।