लाप्लास संशोधन: Difference between revisions
Listen
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Laplace correction | Laplace correction | ||
लैपलेस करेक्शन, जिसे एडिटिव स्मूथिंग या लाप्लासियन स्मूथिंग के रूप में भी जाना जाता है, एक तकनीक है जिसका उपयोग सांख्यिकी और मशीन लर्निंग में शून्य संभावनाओं या आवृत्तियों | लैपलेस संशोधन (करेक्शन), जिसे योगात्मक समरेखण (एडिटिव स्मूथिंग) या लाप्लासियन समरेखण( स्मूथिंग) के रूप में भी जाना जाता है, एक तकनीक है जिसका उपयोग सांख्यिकी और मशीन लर्निंग में शून्य संभावनाओं या आवृत्तियों से सम्बन्धित गणितीय हल निकालने के लीये किया जाता है। यहाँ संभावनाओं का अनुमान लगाया जाता है या सीमित आंकड़ों के आधार पर भविष्यवाणी की जाती है। | ||
संभाव्यता सिद्धांत और सांख्यिकी में, लाप्लास | संभाव्यता सिद्धांत और सांख्यिकी में, लाप्लास संशोधन का उपयोग घटनाओं के संभाव्यता अनुमानों (प्राबबिलिटी एस्टीमटेस) को समायोजित करने के लिए किया जाता है जब नमूना का आकार छोटा होता है और कुछ घटनाओं में शून्य आवृत्ति होती है। यह उन स्थितियों में विशेष रूप से उपयोगी है, जहां किसी घटना का घटित होना दुर्लभ है या नमूना आकार छोटा है, जो अपरिष्कृत अधिकतम संभावना अनुमान (MLE) या आवृत्ति-आधारित अनुमानक का उपयोग करते समय, अविश्वसनीय संभावना अनुमानों को जन्म दे सकता है। | ||
लाप्लास | लाप्लास संशोधन में संभावनाओं की गणना करने से पहले डेटा में प्रत्येक घटना या श्रेणी की गिनती में एक छोटा स्थिरांक (आमतौर पर 1) जोड़ना शामिल है। इसमें अनुमानों का समरेखण "स्मूथिंग" करने का प्रभाव होता है और शून्य संभावनाओं की समस्या से बचा जाता है, जो कुछ गणनाओं में समस्याएं पैदा कर सकता है, जैसे कि बायेसियन अनुमान, नैवे बेयस वर्गीकरण और अन्य संभाव्य मॉडल। | ||
गणितीय रूप से, लाप्लास सुधार को निम्नानुसार व्यक्त किया जा सकता है: | गणितीय रूप से, लाप्लास सुधार को निम्नानुसार व्यक्त किया जा सकता है: | ||
Line 13: | Line 13: | ||
जहाँ: | जहाँ: | ||
<math>P_{laplace}</math>लाप्लास-संशोधित संभाव्यता अनुमान है | <math>P_{laplace}</math>लाप्लास-संशोधित संभाव्यता अनुमान है, | ||
<math>n_i</math> रुचि | <math>n_i</math> रुचि की घटनाओं की घटना गिनती है, | ||
<math>N</math> सभी घटनाओं या प्रेक्षणों की कुल संख्या है | <math>N</math> सभी घटनाओं या प्रेक्षणों की कुल संख्या है, | ||
<math>k</math> संभावित घटनाओं या श्रेणियों की संख्या है | <math>k</math> संभावित घटनाओं या श्रेणियों की संख्या है, | ||
अंश (नुम्रेटर ) में "<math>+1</math>" और भाजक (डिनोमिनेटर) में "<math>k</math>" चौरसाई कारक हैं जो कि गिनती में जोड़े जाते हैं। विशिष्ट समस्या और डोमेन ज्ञान के आधार पर इन मूल्यों को समायोजित किया जा सकता है। | भिन्न के ऊपर का अंक अंश (नुम्रेटर ) में "<math>+1</math>" और भाजक (डिनोमिनेटर) में "<math>k</math>" चौरसाई कारक हैं जो कि गिनती में जोड़े जाते हैं। विशिष्ट समस्या और डोमेन ज्ञान के आधार पर इन मूल्यों को समायोजित किया जा सकता है। | ||
लाप्लास सुधार प्रायिकता अनुमान और भविष्यवाणी कार्यों में शून्य संभावनाओं या आवृत्तियों के मुद्दे को संभालने के लिए एक सरल और व्यापक रूप से इस्तेमाल की जाने वाली तकनीक है। हालांकि, यह हमेशा सबसे अच्छा समाधान नहीं हो सकता है, और अन्य अधिक परिष्कृत | लाप्लास सुधार प्रायिकता अनुमान और भविष्यवाणी कार्यों में शून्य संभावनाओं या आवृत्तियों के मुद्दे को संभालने के लिए एक सरल और व्यापक रूप से इस्तेमाल की जाने वाली तकनीक है। हालांकि, यह हमेशा सबसे अच्छा समाधान नहीं हो सकता है, और अन्य अधिक परिष्कृत समरेखण तकनीकें, जैसे बायेसियन समरेखण या गुड-ट्यूरिंग समरेखण, डेटा की विशेषताओं और विशिष्ट अनुप्रयोग के आधार पर कुछ स्थितियों में अधिक उपयुक्त हो सकती हैं। | ||
[[Category:तरंगे]] | [[Category:तरंगे]] |
Revision as of 22:45, 9 June 2023
Laplace correction
लैपलेस संशोधन (करेक्शन), जिसे योगात्मक समरेखण (एडिटिव स्मूथिंग) या लाप्लासियन समरेखण( स्मूथिंग) के रूप में भी जाना जाता है, एक तकनीक है जिसका उपयोग सांख्यिकी और मशीन लर्निंग में शून्य संभावनाओं या आवृत्तियों से सम्बन्धित गणितीय हल निकालने के लीये किया जाता है। यहाँ संभावनाओं का अनुमान लगाया जाता है या सीमित आंकड़ों के आधार पर भविष्यवाणी की जाती है।
संभाव्यता सिद्धांत और सांख्यिकी में, लाप्लास संशोधन का उपयोग घटनाओं के संभाव्यता अनुमानों (प्राबबिलिटी एस्टीमटेस) को समायोजित करने के लिए किया जाता है जब नमूना का आकार छोटा होता है और कुछ घटनाओं में शून्य आवृत्ति होती है। यह उन स्थितियों में विशेष रूप से उपयोगी है, जहां किसी घटना का घटित होना दुर्लभ है या नमूना आकार छोटा है, जो अपरिष्कृत अधिकतम संभावना अनुमान (MLE) या आवृत्ति-आधारित अनुमानक का उपयोग करते समय, अविश्वसनीय संभावना अनुमानों को जन्म दे सकता है।
लाप्लास संशोधन में संभावनाओं की गणना करने से पहले डेटा में प्रत्येक घटना या श्रेणी की गिनती में एक छोटा स्थिरांक (आमतौर पर 1) जोड़ना शामिल है। इसमें अनुमानों का समरेखण "स्मूथिंग" करने का प्रभाव होता है और शून्य संभावनाओं की समस्या से बचा जाता है, जो कुछ गणनाओं में समस्याएं पैदा कर सकता है, जैसे कि बायेसियन अनुमान, नैवे बेयस वर्गीकरण और अन्य संभाव्य मॉडल।
गणितीय रूप से, लाप्लास सुधार को निम्नानुसार व्यक्त किया जा सकता है:
जहाँ:
लाप्लास-संशोधित संभाव्यता अनुमान है,
रुचि की घटनाओं की घटना गिनती है,
सभी घटनाओं या प्रेक्षणों की कुल संख्या है,
संभावित घटनाओं या श्रेणियों की संख्या है,
भिन्न के ऊपर का अंक अंश (नुम्रेटर ) में "" और भाजक (डिनोमिनेटर) में "" चौरसाई कारक हैं जो कि गिनती में जोड़े जाते हैं। विशिष्ट समस्या और डोमेन ज्ञान के आधार पर इन मूल्यों को समायोजित किया जा सकता है।
लाप्लास सुधार प्रायिकता अनुमान और भविष्यवाणी कार्यों में शून्य संभावनाओं या आवृत्तियों के मुद्दे को संभालने के लिए एक सरल और व्यापक रूप से इस्तेमाल की जाने वाली तकनीक है। हालांकि, यह हमेशा सबसे अच्छा समाधान नहीं हो सकता है, और अन्य अधिक परिष्कृत समरेखण तकनीकें, जैसे बायेसियन समरेखण या गुड-ट्यूरिंग समरेखण, डेटा की विशेषताओं और विशिष्ट अनुप्रयोग के आधार पर कुछ स्थितियों में अधिक उपयुक्त हो सकती हैं।