सदिशों का व्यवकलन: Difference between revisions
Listen
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Subtraction of vectors | Subtraction of vectors | ||
भौतिकी में, सदिश वे मात्राएँ होती हैं जिनमें परिमाण (आकार) और दिशा दोनों होते हैं। वे अक्सर तीरों द्वारा दर्शाए जाते हैं, जहां तीर की लंबाई परिमाण का प्रतिनिधित्व करती है, और तीर की दिशा | भौतिकी में, सदिश वे मात्राएँ होती हैं जिनमें परिमाण (आकार) और दिशा दोनों होते हैं। वे अक्सर तीरों द्वारा दर्शाए जाते हैं, जहां तीर की लंबाई परिमाण का प्रतिनिधित्व करती है, और तीर की दिशा सादिश की दिशा दर्शाती है। सदिशों के घटाव में दो सदिशों के बीच अंतर ज्ञात करना शामिल है। | ||
सदिशों को घटाने के लिए, हम "टिप-टू-टेल" | सदिशों को घटाने के लिए, हम शीर्ष से पुच्छ ("टिप-टू-टेल") नामक विधि का उपयोग करते हैं। यहाँ कदम हैं: | ||
पहला सदिश आरेखित करें: पहले सदिश को दिए गए परिमाण और दिशा के अनुसार आरेखित करके प्रारंभ करें। | पहला सदिश आरेखित करें: पहले सदिश को दिए गए परिमाण और दिशा के अनुसार आरेखित करके प्रारंभ करें। सादिश का शुरुआती बिंदु मायने नहीं रखता; आप कोई भी सुविधाजनक बिंदु चुन सकते हैं। | ||
दूसरा सदिश आरेखित करें: पहले सदिश की नोक (एरोहेड) से, इसके परिमाण और दिशा के अनुसार दूसरा सदिश आरेखित करें। दूसरे | दूसरा सदिश आरेखित करें: पहले सदिश की नोक (एरोहेड) से, इसके परिमाण और दिशा के अनुसार दूसरा सदिश आरेखित करें। दूसरे सादिश की नोक परिणामी घटाव सादिश के अंत बिंदु का प्रतिनिधित्व करती है। | ||
परिणामी | परिणामी सादिश खोजें: पहले सादिश के शुरुआती बिंदु से दूसरे सादिश के अंत बिंदु तक एक तीर बनाएं। यह परिणामी तीर दो सदिशों के घटाव का प्रतिनिधित्व करता है। | ||
परिणामी | परिणामी सादिश पहले सादिश से दूसरे सादिश के घटाव का प्रतिनिधित्व करता है। इसका परिमाण और दिशा मूल सदिशों के परिमाण और दिशाओं पर निर्भर करती है। | ||
यदि आपके पास उनके घटकों (x और y निर्देशांक) द्वारा दर्शाए गए वैक्टर हैं, तो आप उन्हें घटक-वार घटा सकते हैं। उदाहरण के लिए, मान लें कि आपके पास दो सदिश A और B हैं, जहाँ A = (Aₓ, Aᵧ) और B = (Bₓ, Bᵧ)। सदिशों को घटाने के लिए, आप उनके संबंधित घटकों को घटाते हैं: | यदि आपके पास उनके घटकों (x और y निर्देशांक) द्वारा दर्शाए गए वैक्टर हैं, तो आप उन्हें घटक-वार घटा सकते हैं। उदाहरण के लिए, मान लें कि आपके पास दो सदिश A और B हैं, जहाँ A = (Aₓ, Aᵧ) और B = (Bₓ, Bᵧ)। सदिशों को घटाने के लिए, आप उनके संबंधित घटकों को घटाते हैं: | ||
Line 21: | Line 21: | ||
सदिशों का घटाव भौतिकी में महत्वपूर्ण है क्योंकि यह हमें उन स्थितियों का विश्लेषण करने में मदद करता है जहां एक साथ कई बल या गतियां कार्य कर रही हैं। सदिशों को घटाकर हम इन बलों या गतियों के शुद्ध प्रभाव को निर्धारित कर सकते हैं और उनके संयुक्त प्रभाव को समझ सकते हैं। | सदिशों का घटाव भौतिकी में महत्वपूर्ण है क्योंकि यह हमें उन स्थितियों का विश्लेषण करने में मदद करता है जहां एक साथ कई बल या गतियां कार्य कर रही हैं। सदिशों को घटाकर हम इन बलों या गतियों के शुद्ध प्रभाव को निर्धारित कर सकते हैं और उनके संयुक्त प्रभाव को समझ सकते हैं। | ||
याद रखें, वैक्टर घटाते समय, आपको परिमाण और दिशा दोनों पर ध्यान देना चाहिए, और परिणामी | याद रखें, वैक्टर घटाते समय, आपको परिमाण और दिशा दोनों पर ध्यान देना चाहिए, और परिणामी सादिश को खोजने के लिए टिप-टू-टेल विधि का पालन करें या घटक-वार घटाव का उपयोग करें। | ||
[[Category:समतल में गति]] | [[Category:समतल में गति]] |
Revision as of 11:53, 16 June 2023
Subtraction of vectors
भौतिकी में, सदिश वे मात्राएँ होती हैं जिनमें परिमाण (आकार) और दिशा दोनों होते हैं। वे अक्सर तीरों द्वारा दर्शाए जाते हैं, जहां तीर की लंबाई परिमाण का प्रतिनिधित्व करती है, और तीर की दिशा सादिश की दिशा दर्शाती है। सदिशों के घटाव में दो सदिशों के बीच अंतर ज्ञात करना शामिल है।
सदिशों को घटाने के लिए, हम शीर्ष से पुच्छ ("टिप-टू-टेल") नामक विधि का उपयोग करते हैं। यहाँ कदम हैं:
पहला सदिश आरेखित करें: पहले सदिश को दिए गए परिमाण और दिशा के अनुसार आरेखित करके प्रारंभ करें। सादिश का शुरुआती बिंदु मायने नहीं रखता; आप कोई भी सुविधाजनक बिंदु चुन सकते हैं।
दूसरा सदिश आरेखित करें: पहले सदिश की नोक (एरोहेड) से, इसके परिमाण और दिशा के अनुसार दूसरा सदिश आरेखित करें। दूसरे सादिश की नोक परिणामी घटाव सादिश के अंत बिंदु का प्रतिनिधित्व करती है।
परिणामी सादिश खोजें: पहले सादिश के शुरुआती बिंदु से दूसरे सादिश के अंत बिंदु तक एक तीर बनाएं। यह परिणामी तीर दो सदिशों के घटाव का प्रतिनिधित्व करता है।
परिणामी सादिश पहले सादिश से दूसरे सादिश के घटाव का प्रतिनिधित्व करता है। इसका परिमाण और दिशा मूल सदिशों के परिमाण और दिशाओं पर निर्भर करती है।
यदि आपके पास उनके घटकों (x और y निर्देशांक) द्वारा दर्शाए गए वैक्टर हैं, तो आप उन्हें घटक-वार घटा सकते हैं। उदाहरण के लिए, मान लें कि आपके पास दो सदिश A और B हैं, जहाँ A = (Aₓ, Aᵧ) और B = (Bₓ, Bᵧ)। सदिशों को घटाने के लिए, आप उनके संबंधित घटकों को घटाते हैं:
परिणामी सदिश R = (Aₓ - Bₓ, Aᵧ - Bᵧ)
इसका अर्थ यह है कि परिणामी सदिश का x-घटक प्राप्त करने के लिए सदिश A के x-घटक से सदिश B के x-घटक को घटाते हैं, और इसी प्रकार y-घटकों के लिए भी।
सदिशों का घटाव भौतिकी में महत्वपूर्ण है क्योंकि यह हमें उन स्थितियों का विश्लेषण करने में मदद करता है जहां एक साथ कई बल या गतियां कार्य कर रही हैं। सदिशों को घटाकर हम इन बलों या गतियों के शुद्ध प्रभाव को निर्धारित कर सकते हैं और उनके संयुक्त प्रभाव को समझ सकते हैं।
याद रखें, वैक्टर घटाते समय, आपको परिमाण और दिशा दोनों पर ध्यान देना चाहिए, और परिणामी सादिश को खोजने के लिए टिप-टू-टेल विधि का पालन करें या घटक-वार घटाव का उपयोग करें।