पथ लम्बाई: Difference between revisions

From Vidyalayawiki

Listen

No edit summary
No edit summary
Line 1: Line 1:
Path Length
Path Length


पथ की लंबाई किसी विशेष पथ या प्रक्षेपवक्र के साथ किसी वस्तु द्वारा तय की गई कुल दूरी को संदर्भित करती है। गति की दिशा की परवाह किए बिना, यह वस्तु द्वारा तय की गई वास्तविक दूरी को ध्यान में रखता है। पथ की लंबाई एक अदिश राशि है और हमेशा धनात्मक होती है।


पथ की लंबाई की गणना करने के लिए, आपको पथ के प्रत्येक खंड के साथ तय की गई दूरियों का योग करना होगा। यह पथ को छोटे खंडों में विभाजित करके और प्रत्येक खंड के लिए दूरी की गणना करके किया जा सकता है। खंड जितने छोटे होते हैं, पथ की लंबाई की गणना उतनी ही सटीक होती है।
उदाहरण के लिए, यदि कोई वस्तु घुमावदार पथ का अनुसरण करती है, तो आप पथ की लंबाई को छोटे सीधे खंडों में विभाजित करके और दूरी सूत्र (आमतौर पर कार्टेशियन निर्देशांक में यूक्लिडियन दूरी) का उपयोग करके प्रत्येक खंड के लिए दूरी की गणना कर सकते हैं:
दूरी = <math>\sqrt{((x_2 - x_1)^2+(y_2 - y_1)^2+(z_2 - z_1)^2)}</math>
जहां (X1, y1, z1) और (x2, y2, z2) खंड पर दो बिंदुओं के निर्देशांक हैं।
सभी खंडों के लिए दूरियों का योग करके, आप वस्तु द्वारा तय की गई कुल पथ लंबाई का अनुमान प्राप्त कर सकते हैं।
यह ध्यान रखना महत्वपूर्ण है कि पथ की लंबाई विस्थापन से भिन्न होती है, जो एक सदिश राशि है जो किसी वस्तु की प्रारंभिक और अंतिम स्थिति के बीच सीधी रेखा की दूरी का प्रतिनिधित्व करती है। पथ की लंबाई पथ के साथ तय की गई वास्तविक दूरी पर विचार करती है, जबकि विस्थापन केवल स्थिति में परिवर्तन पर विचार करता है।
[[Category:सरल रेखा में गति]]
[[Category:सरल रेखा में गति]]

Revision as of 10:55, 18 June 2023

Path Length

पथ की लंबाई किसी विशेष पथ या प्रक्षेपवक्र के साथ किसी वस्तु द्वारा तय की गई कुल दूरी को संदर्भित करती है। गति की दिशा की परवाह किए बिना, यह वस्तु द्वारा तय की गई वास्तविक दूरी को ध्यान में रखता है। पथ की लंबाई एक अदिश राशि है और हमेशा धनात्मक होती है।

पथ की लंबाई की गणना करने के लिए, आपको पथ के प्रत्येक खंड के साथ तय की गई दूरियों का योग करना होगा। यह पथ को छोटे खंडों में विभाजित करके और प्रत्येक खंड के लिए दूरी की गणना करके किया जा सकता है। खंड जितने छोटे होते हैं, पथ की लंबाई की गणना उतनी ही सटीक होती है।

उदाहरण के लिए, यदि कोई वस्तु घुमावदार पथ का अनुसरण करती है, तो आप पथ की लंबाई को छोटे सीधे खंडों में विभाजित करके और दूरी सूत्र (आमतौर पर कार्टेशियन निर्देशांक में यूक्लिडियन दूरी) का उपयोग करके प्रत्येक खंड के लिए दूरी की गणना कर सकते हैं:

दूरी =

जहां (X1, y1, z1) और (x2, y2, z2) खंड पर दो बिंदुओं के निर्देशांक हैं।

सभी खंडों के लिए दूरियों का योग करके, आप वस्तु द्वारा तय की गई कुल पथ लंबाई का अनुमान प्राप्त कर सकते हैं।

यह ध्यान रखना महत्वपूर्ण है कि पथ की लंबाई विस्थापन से भिन्न होती है, जो एक सदिश राशि है जो किसी वस्तु की प्रारंभिक और अंतिम स्थिति के बीच सीधी रेखा की दूरी का प्रतिनिधित्व करती है। पथ की लंबाई पथ के साथ तय की गई वास्तविक दूरी पर विचार करती है, जबकि विस्थापन केवल स्थिति में परिवर्तन पर विचार करता है।