मापन में अनिश्चितता: Difference between revisions
Listen
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
== वैज्ञानिक संकेतन == | == वैज्ञानिक संकेतन == | ||
जैसा कि हम सभी जानते हैं कि परमाणुओं और अणुओं का द्रव्यमान बहुत कम होता है। हालाँकि, हमें यह नहीं भूलना चाहिए कि वे संख्या में बहुत अधिक होते हैं। वैज्ञानिकों को 105,432,789,101,110,000,000,987,000,870 और इससे अधिक की संख्या के बारे में समझना है। | जैसा कि हम सभी जानते हैं कि परमाणुओं और अणुओं का द्रव्यमान बहुत कम होता है। हालाँकि, हमें यह नहीं भूलना चाहिए कि वे संख्या में बहुत अधिक होते हैं। वैज्ञानिकों को 105,432,789,101,110,000,000,987,000,870 और इससे अधिक की संख्या के बारे में समझना है। वैज्ञानिक संकेतन हमें उन संख्याओं का प्रतिनिधित्व करने में मदद करता है जो एकल अंकों की संख्याओं के गुणन के रूप में बहुत बड़ी या बहुत छोटी होती हैं और 10 संबंधित घातांक की घात तक बढ़ जाती हैं। यदि संख्या बहुत बड़ी होती है तो घातांक धनात्मक होता है और यदि संख्या बहुत छोटी होती है तो घातांक ऋणात्मक होता है। |
Revision as of 11:52, 22 June 2023
प्रायः, हमें ऐसे मान मिलते हैं जो एक-दूसरे के और उनके औसत मानों के बहुत करीब होते हैं। ऐसे मामलों में, हम कह सकते हैं कि माप बिल्कुल सही या सटीक है। हालाँकि, कई बार आपको अनुभव होगा कि माप सही नहीं है। ऐसे समय में, आपको माप में अनिश्चितता का उल्लेख करना होगा। रसायन विज्ञान के अध्यन में अनेक बार हमें प्रायोगिक आँकणों के साथ साथ सैद्धांतिक आंकङों पर विचार करना होता है। संख्याओं का सरलता से संचालन करना तथा आंकङों को निश्चितता के साथ प्रस्तुत करने के भी अर्थपूर्ण तरीके हैं, इन इन्ही मतों का विस्तार पूर्वक वर्णन किया जा रहा है। हम महत्वपूर्ण आंकड़ों के माध्यम से अनिश्चितता का संकेत देते हैं।
एक संख्या में अंकों की कुल संख्या है। इसमें अंतिम अंक भी शामिल है जिसका मान अनिश्चित है। आइए अब हम मापन में अनिश्चितता के व्यावहारिक और वैज्ञानिक संकेतन को देखतें हैं।
वैज्ञानिक संकेतन
जैसा कि हम सभी जानते हैं कि परमाणुओं और अणुओं का द्रव्यमान बहुत कम होता है। हालाँकि, हमें यह नहीं भूलना चाहिए कि वे संख्या में बहुत अधिक होते हैं। वैज्ञानिकों को 105,432,789,101,110,000,000,987,000,870 और इससे अधिक की संख्या के बारे में समझना है। वैज्ञानिक संकेतन हमें उन संख्याओं का प्रतिनिधित्व करने में मदद करता है जो एकल अंकों की संख्याओं के गुणन के रूप में बहुत बड़ी या बहुत छोटी होती हैं और 10 संबंधित घातांक की घात तक बढ़ जाती हैं। यदि संख्या बहुत बड़ी होती है तो घातांक धनात्मक होता है और यदि संख्या बहुत छोटी होती है तो घातांक ऋणात्मक होता है।