सांतत्य समीकरण: Difference between revisions
Listen
Line 28: | Line 28: | ||
निरंतरता का समीकरण, बर्नौली के समीकरण से भी जुड़ा हुआ है, जो एक आदर्श, घर्षण रहित द्रव प्रवाह में एक स्ट्रीमलाइन के साथ द्रव दबाव, वेग और ऊंचाई के बीच संबंध का वर्णन करता है। साथ में, ये समीकरण विभिन्न प्रवाह स्थितियों में तरल पदार्थों के व्यवहार में मूल्यवान अंतर्दृष्टि प्रदान करते हैं। | निरंतरता का समीकरण, बर्नौली के समीकरण से भी जुड़ा हुआ है, जो एक आदर्श, घर्षण रहित द्रव प्रवाह में एक स्ट्रीमलाइन के साथ द्रव दबाव, वेग और ऊंचाई के बीच संबंध का वर्णन करता है। साथ में, ये समीकरण विभिन्न प्रवाह स्थितियों में तरल पदार्थों के व्यवहार में मूल्यवान अंतर्दृष्टि प्रदान करते हैं। | ||
== | == संक्षेप में == | ||
ये समीकरण विभिन्न प्रवाह स्थितियों में तरल पदार्थों के व्यवहार में मूल्यवान अंतर्दृष्टि प्रदान करते हैं। | ये समीकरण विभिन्न प्रवाह स्थितियों में तरल पदार्थों के व्यवहार में मूल्यवान अंतर्दृष्टि प्रदान करते हैं। | ||
[[Category:तरलों के यंत्रिकी गुण]] | [[Category:तरलों के यंत्रिकी गुण]] |
Revision as of 10:37, 21 July 2023
Equation of continuity
निरंतरता का समीकरण, जिसे निरंतरता के सिद्धांत के रूप में भी जाना जाता है, द्रव गतिशीलता में एक मौलिक सिद्धांत है जो एक असंपीड़ित तरल पदार्थ की प्रवाह दर को प्रवाह के क्रॉस-अनुभागीय क्षेत्र से संबंधित करता है।
समीकरण
निरंतरता का समीकरण द्रव्यमान के संरक्षण के सिद्धांत पर आधारित है, जो बताता है कि बंद प्रणाली में द्रव्यमान न तो बनता है और न ही नष्ट होता है।
स्वरूप
एक पाइप या नाली के माध्यम से बहने वाले एक असम्पीडित तरल पदार्थ के लिए, निरंतरता का समीकरण निम्नानुसार बताया जा सकता है:
जहाँ:
और प्रवाह के साथ दो अलग-अलग बिंदुओं पर पाइप के क्रॉस-अनुभागीय क्षेत्र हैं,
और उन बिंदुओं पर द्रव के संगत वेग हैं।
दूसरे शब्दों में, क्रॉस-सेक्शनल क्षेत्र का उत्पाद और द्रव का वेग एक स्ट्रीमलाइन के साथ स्थिर रहता है।
तात्पर्य
इस समीकरण का तात्पर्य है कि जब पाइप का क्रॉस-सेक्शनल क्षेत्र घटता है, तो द्रव का वेग बढ़ता है, और इसके विपरीत। यह इस तथ्य को दर्शाता है कि एक निश्चित समय में पाइप के किसी भी क्रॉस-सेक्शन के माध्यम से समान मात्रा में तरल पदार्थ प्रवाहित होना चाहिए, यह मानते हुए कि कोई रिसाव या घनत्व में परिवर्तन नहीं होगा।
सिद्धांत
निरंतरता का समीकरण द्रव्यमान के संरक्षण के सिद्धांत से लिया गया है और यह असम्पीडित तरल पदार्थों के स्थिर-अवस्था और गैर-स्थिर-अवस्था प्रवाह दोनों पर लागू होता है। इसका व्यापक रूप से द्रव गतिशीलता के विभिन्न क्षेत्रों में उपयोग किया जाता है, जिसमें पाइप प्रवाह, चैनल प्रवाह और नोजल या वेंटुरिस के माध्यम से प्रवाह शामिल है।
संबंध का वर्णन
निरंतरता का समीकरण, बर्नौली के समीकरण से भी जुड़ा हुआ है, जो एक आदर्श, घर्षण रहित द्रव प्रवाह में एक स्ट्रीमलाइन के साथ द्रव दबाव, वेग और ऊंचाई के बीच संबंध का वर्णन करता है। साथ में, ये समीकरण विभिन्न प्रवाह स्थितियों में तरल पदार्थों के व्यवहार में मूल्यवान अंतर्दृष्टि प्रदान करते हैं।
संक्षेप में
ये समीकरण विभिन्न प्रवाह स्थितियों में तरल पदार्थों के व्यवहार में मूल्यवान अंतर्दृष्टि प्रदान करते हैं।