विद्युत् धारा पर बल आघूर्ण: Difference between revisions
Listen
m (added Category:गतिमान आवेश और चुंबकत्व using HotCat) |
|||
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
Current on a current loop | Current on a current loop | ||
[[Category:गतिमान आवेश और चुंबकत्व]] | करंट लूप एक बंद पथ को संदर्भित करता है जो एक तार के माध्यम से बहने वाली विद्युत धारा द्वारा बनता है जो अपने शुरुआती बिंदु पर लौटता है। लूप का कोई भी आकार हो सकता है, जैसे गोलाकार या चौकोर लूप। जब इस लूप से विद्युत धारा प्रवाहित होती है, तो इससे उत्पन्न चुंबकीय क्षेत्र के कारण दिलचस्प और उपयोगी घटनाएं घटित होती हैं। | ||
== धारा लूप के चारों ओर चुंबकीय क्षेत्र == | |||
जब लूप में तार के माध्यम से करंट प्रवाहित होता है, तो यह लूप के चारों ओर एक चुंबकीय क्षेत्र बनाता है। चुंबकीय क्षेत्र रेखाएं लूप की धुरी पर केन्द्रित संकेंद्रित वृत्त बनाती हैं। इन चुंबकीय क्षेत्र रेखाओं की दिशा "दाहिने हाथ के नियम" का उपयोग करके निर्धारित की जा सकती है: यदि आप अपने दाहिने हाथ को विद्युत प्रवाह प्रवाह की दिशा में लूप के चारों ओर लपेटते हैं, तो आपका अंगूठा चुंबकीय क्षेत्र की दिशा में इंगित करेगा। | |||
== लूप के अंदर चुंबकीय क्षेत्र == | |||
लूप के अंदर, चुंबकीय क्षेत्र अपेक्षाकृत एक समान होता है और लूप की धुरी के अनुदिश इंगित करता है। लूप के अंदर का चुंबकीय क्षेत्र आमतौर पर लूप के बाहर के क्षेत्र की तुलना में कमजोर होता है। | |||
== धारा लूप के चारों ओर चुंबकीय क्षेत्र के लिए समीकरण == | |||
विद्युत प्रवाह लूप की धुरी के साथ एक बिंदु पर चुंबकीय क्षेत्र की ताकत (बी) की गणना निम्नलिखित समीकरण का उपयोग करके की जा सकती है: | |||
B = (μ₀ * I * A) / (2 * R) | |||
जहाँ: | |||
B टेस्ला (T) में चुंबकीय क्षेत्र की ताकत है। | |||
μ₀ (एमयू शून्य) मुक्त स्थान की पारगम्यता है, एक स्थिर मान लगभग 4π x 10^(-7) टी·एम/ए के बराबर है। | |||
I एम्पीयर (ए) में लूप के माध्यम से बहने वाली धारा है। | |||
A वर्ग मीटर (वर्ग मीटर) में लूप से घिरा क्षेत्र है। | |||
R लूप के केंद्र से उस बिंदु तक की दूरी है जहां आप मीटर (एम) में चुंबकीय क्षेत्र की गणना करना चाहते हैं। | |||
== अनुप्रयोग == | |||
विद्युत प्रवाह लूप और उससे संबंधित चुंबकीय क्षेत्र के कई व्यावहारिक अनुप्रयोग हैं। कुछ उदाहरणों में शामिल हैं: | |||
* इलेक्ट्रोमैग्नेट: करंट लूप का उपयोग शक्तिशाली इलेक्ट्रोमैग्नेट बनाने के लिए किया जाता है, जो मोटर, जनरेटर और चुंबकीय अनुनाद इमेजिंग (एमआरआई) मशीनों जैसे उपकरणों में आवश्यक हैं। | |||
* प्रेरण: वर्तमान लूपों से चुंबकीय क्षेत्र बदलने से पास के लूपों या कंडक्टरों में विद्युत धाराएं प्रेरित हो सकती हैं। इस सिद्धांत का उपयोग ट्रांसफार्मर और वायरलेस चार्जिंग सिस्टम में किया जाता है। | |||
* चुंबकीय कम्पास: पृथ्वी का चुंबकीय क्षेत्र कुछ हद तक एक विशाल वर्तमान लूप के समान है, और चुंबकीय कम्पास इस अवधारणा का उपयोग हमें दिशाएं खोजने में मदद करने के लिए करते हैं। | |||
== संक्षेप में == | |||
करंट लूप एक बंद पथ है जो एक तार के माध्यम से बहने वाली विद्युत धारा द्वारा बनता है। यह लूप के चारों ओर एक चुंबकीय क्षेत्र उत्पन्न करता है, और इस घटना का हमारे रोजमर्रा के जीवन और भौतिकी और इंजीनियरिंग की दुनिया में विभिन्न व्यावहारिक अनुप्रयोग हैं। | |||
[[Category:गतिमान आवेश और चुंबकत्व]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] |
Latest revision as of 12:04, 4 August 2023
Current on a current loop
करंट लूप एक बंद पथ को संदर्भित करता है जो एक तार के माध्यम से बहने वाली विद्युत धारा द्वारा बनता है जो अपने शुरुआती बिंदु पर लौटता है। लूप का कोई भी आकार हो सकता है, जैसे गोलाकार या चौकोर लूप। जब इस लूप से विद्युत धारा प्रवाहित होती है, तो इससे उत्पन्न चुंबकीय क्षेत्र के कारण दिलचस्प और उपयोगी घटनाएं घटित होती हैं।
धारा लूप के चारों ओर चुंबकीय क्षेत्र
जब लूप में तार के माध्यम से करंट प्रवाहित होता है, तो यह लूप के चारों ओर एक चुंबकीय क्षेत्र बनाता है। चुंबकीय क्षेत्र रेखाएं लूप की धुरी पर केन्द्रित संकेंद्रित वृत्त बनाती हैं। इन चुंबकीय क्षेत्र रेखाओं की दिशा "दाहिने हाथ के नियम" का उपयोग करके निर्धारित की जा सकती है: यदि आप अपने दाहिने हाथ को विद्युत प्रवाह प्रवाह की दिशा में लूप के चारों ओर लपेटते हैं, तो आपका अंगूठा चुंबकीय क्षेत्र की दिशा में इंगित करेगा।
लूप के अंदर चुंबकीय क्षेत्र
लूप के अंदर, चुंबकीय क्षेत्र अपेक्षाकृत एक समान होता है और लूप की धुरी के अनुदिश इंगित करता है। लूप के अंदर का चुंबकीय क्षेत्र आमतौर पर लूप के बाहर के क्षेत्र की तुलना में कमजोर होता है।
धारा लूप के चारों ओर चुंबकीय क्षेत्र के लिए समीकरण
विद्युत प्रवाह लूप की धुरी के साथ एक बिंदु पर चुंबकीय क्षेत्र की ताकत (बी) की गणना निम्नलिखित समीकरण का उपयोग करके की जा सकती है:
B = (μ₀ * I * A) / (2 * R)
जहाँ:
B टेस्ला (T) में चुंबकीय क्षेत्र की ताकत है।
μ₀ (एमयू शून्य) मुक्त स्थान की पारगम्यता है, एक स्थिर मान लगभग 4π x 10^(-7) टी·एम/ए के बराबर है।
I एम्पीयर (ए) में लूप के माध्यम से बहने वाली धारा है।
A वर्ग मीटर (वर्ग मीटर) में लूप से घिरा क्षेत्र है।
R लूप के केंद्र से उस बिंदु तक की दूरी है जहां आप मीटर (एम) में चुंबकीय क्षेत्र की गणना करना चाहते हैं।
अनुप्रयोग
विद्युत प्रवाह लूप और उससे संबंधित चुंबकीय क्षेत्र के कई व्यावहारिक अनुप्रयोग हैं। कुछ उदाहरणों में शामिल हैं:
- इलेक्ट्रोमैग्नेट: करंट लूप का उपयोग शक्तिशाली इलेक्ट्रोमैग्नेट बनाने के लिए किया जाता है, जो मोटर, जनरेटर और चुंबकीय अनुनाद इमेजिंग (एमआरआई) मशीनों जैसे उपकरणों में आवश्यक हैं।
- प्रेरण: वर्तमान लूपों से चुंबकीय क्षेत्र बदलने से पास के लूपों या कंडक्टरों में विद्युत धाराएं प्रेरित हो सकती हैं। इस सिद्धांत का उपयोग ट्रांसफार्मर और वायरलेस चार्जिंग सिस्टम में किया जाता है।
- चुंबकीय कम्पास: पृथ्वी का चुंबकीय क्षेत्र कुछ हद तक एक विशाल वर्तमान लूप के समान है, और चुंबकीय कम्पास इस अवधारणा का उपयोग हमें दिशाएं खोजने में मदद करने के लिए करते हैं।
संक्षेप में
करंट लूप एक बंद पथ है जो एक तार के माध्यम से बहने वाली विद्युत धारा द्वारा बनता है। यह लूप के चारों ओर एक चुंबकीय क्षेत्र उत्पन्न करता है, और इस घटना का हमारे रोजमर्रा के जीवन और भौतिकी और इंजीनियरिंग की दुनिया में विभिन्न व्यावहारिक अनुप्रयोग हैं।