बॉयल का नियम: Difference between revisions

From Vidyalayawiki

Line 45: Line 45:
!<math>d = \left ( \frac{m}{k} \right )p</math>
!<math>d = \left ( \frac{m}{k} \right )p</math>
|}
|}
</blockquote>इस सूत्र से प्रदर्शित होता है कि स्थित ताप पर गैस के निश्चित द्रव्यमान का दाब घनत्व के समानुपाती होता है।[[Category:कक्षा-11]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]][[Category:रसायन विज्ञान]]
</blockquote>इस सूत्र से प्रदर्शित होता है कि स्थित ताप पर गैस के निश्चित द्रव्यमान का दाब घनत्व के समानुपाती होता है।[[Category:कक्षा-11]] [[Category:कक्षा-11]][[Category:रसायन विज्ञान]]

Revision as of 15:36, 8 August 2023

बॉयल का पूरा नाम रॉबर्ट बॉयल है और उनके ही नाम पर इस नियम को  के नियम को बॉयल का नियम भी कहा गया है , यह स्थिर ताप पर दाब और आयतन में संबंध बताता है इसलिए  इसे " दाब - आयतन संबंध" भी कहा जाता है।

बॉयल के नियम के अनुसार " स्थिर ताप पर गैस की निश्चित मात्रा (अर्थात मोलों की संख्या) का दाब उसके आयतन के व्युत्क्रमानुपाती होता है।"

बॉयल के नियम का गणितीय रूप

गणितीय रूप से बॉयल के नियम को निम्न प्रकार लिखा जा सकता है:

स्थिर T तथा n पर P ∝ ........................ (समीकरण संख्या - 1)

व्युत्क्रमानुपाती चिन्ह को हटाकर उसके स्थान पर एक नियतांक k लगाने पर

  ............................................... (समीकरण संख्या - 2)

जहाँ

- समानुपाती स्थिरांक

p - गैस का दाब

V - गैस का आयतन

समीकरण को पुनर्व्यवस्थित करने पर हम पाते हैं कि

............................................... (समीकरण संख्या - 3)

अर्थात 'स्थिर ताप पर गैस की निश्चित मात्रा का आयतन तथा दाब का गुणनफल स्थिर होता है।'

यदि गैस की निश्चित मात्रा को स्थिर ताप T पर दाब p1 तथा आयतन V1 से प्रसारित किया जाता है जिससे दाब p2 और आयतन V2 हो जाये तो बॉयल के नियम से

p1V1 = p2V2 = स्थिरांक .......................................... (समीकरण संख्या - 4)

मात्रात्मक रूप से बॉयल का नियम यह सिद्ध करता है कि गैस अत्यधिक सम्पीड़ित है, क्योकी जब एक गैस को किसी दिए गए द्रव्यमान तक सम्पीड़ित किया जाता है, तब उसके अणु काम स्थान घेरते हैं। इसका तातपर्य यह है कि उच्च दाब पर गैस अत्यधिक सघन हो जाती है।

गैस के दाब तथा घनत्व के मध्य संबंध

गैस के दाब तथा घनत्व के मध्य संबंध निम्न- लिखित सूत्र द्वारा ज्ञात किया जा सकता है:

.......................................... (समीकरण संख्या - 5)

जहाँ

d - घनत्व

m - द्रव्यमान

V - गैस का आयतन

समीकरण (5) में से घनत्व के मान को समीकरण 3 में रखने पर

इस सूत्र से प्रदर्शित होता है कि स्थित ताप पर गैस के निश्चित द्रव्यमान का दाब घनत्व के समानुपाती होता है।