लीलावती में 'तीन का नियम': Difference between revisions
No edit summary Tag: Manual revert |
No edit summary |
||
Line 63: | Line 63: | ||
==संदर्भ== | ==संदर्भ== | ||
<references /> | <references /> | ||
[[Category:लीलावती में गणित]] | [[Category:लीलावती में गणित]][[Category:सामान्य श्रेणी]] |
Revision as of 16:49, 9 August 2023
भूमिका
'तीन का नियम', एक ऐसा रूप है जो तीन ज्ञात मूल्यों और एक अज्ञात के बीच आनुपातिकता की समस्याओं के समाधान की अनुमति देता है। दूसरे शब्दों में, तीन का नियम एक संक्रिया है जो हमें दिए गए अनुपात के संबंध में चौथा पद ज्ञात करने की अनुमति देती है।
श्लोक सं. 79 :
प्रमाणमिच्छा च समानजातिः
आद्यन्तयोस्तत्फलमन्यजातिः ।
मध्ये तदिच्छाहतमाद्यहृत्स्यात्
इच्छाफलं व्यस्तविधिर्विलोमे ।। LXXIX ।।
अनुवाद :
इसमें तीन मात्राएँ सम्मिलित होती हैं।[1] बाईं ओर पहले वाले (a) को प्रमाण (स्केल/पैमाना) कहा जाता है, दूसरे(b) को फल (परिणाम ) , और तीसरे (c) को इच्छा (माँग या आवश्यकता) कहा जाता है। जो उत्तर(d) प्राप्त होता है, उसे इच्छा-फल (वांछित परिणाम) कहा जाता है। यहाँ a और c समान प्रकार के होने चाहिए और b को a और c से भिन्न होना चाहिए। सूत्र निम्नानुसार है। d उसी प्रकार का है जिस प्रकार b है।
उदाहरण 1
कुंकुमस्य सदलं पलद्वयं निष्कसप्तमलवेत्रिभिर्यदि ।
प्राप्यते सपदि मे वणिग्वर ब्रूहि निष्कनवकेन तत्कियत् ॥८१॥
यदि पल केसर का मूल्य निष्क है, हे ! विशेषज्ञ व्यवसायी, मुझे जल्दी बताओ कि निष्क में कितनी मात्रा में केसर खरीदा जा सकता है।
टिप्पणी:
यह एक प्रत्यक्ष अनुपात है, क्योंकि अधिक पैसे से अधिक केसर खरीदा जा सकता है।
तीन के नियम के अनुसार।
निष्क में मूल्य ⇒ केसर की मात्रा
⇒
9 ⇒ d
अत: = पल।
उदाहरण 2
द्रम्मद्वयेन साष्टांशा शालितण्डुलखारिका ।
लभ्या चेत् पणसप्तत्या तत्किं सपदि कथ्यताम् ॥८३॥
खारिक चावल 2 द्रम्म में खरीदा जा सकता है, तो 70 पण में कितना चावल खरीदा जा सकता है?
टिप्पणी: यह भी प्रत्यक्ष अनुपात का एक उदाहरण है।
पण में मूल्य ⇒ चावल की मात्रा
32 ⇒
70 ⇒ d
===खारिक
यह भी देखें
संदर्भ
- ↑ (भास्कराचार्य की लीलावती - वैदिक परंपरा के गणित का ग्रंथ। नई दिल्लीः मोतीलाल बनारसीदास पब्लिशर्स। 2001. पृष्ठ- 77-79. ISBN 81-208-1420-7।)"Līlāvatī Of Bhāskarācārya - A Treatise of Mathematics of Vedic Tradition. New Delhi: Motilal Banarsidass Publishers. 2001. pp. 77-79.ISBN 81-208-1420-7".