मैक्सवेल के समीकरण: Difference between revisions
From Vidyalayawiki
Listen
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Maxwell's equation | Maxwell's equation | ||
मैक्सवेल के समीकरण विद्युत चुंबकत्व में चार मौलिक समीकरणों का एक सेट हैं जो बताते हैं कि विद्युत और चुंबकीय क्षेत्र अंतरिक्ष के माध्यम से कैसे बातचीत करते हैं और फैलते हैं। ये समीकरण 19वीं शताब्दी में जेम्स क्लर्क मैक्सवेल द्वारा तैयार किए गए थे और इन्हें भौतिकी के इतिहास में सबसे महत्वपूर्ण उपलब्धियों में से एक माना जाता है। | |||
बिजली के लिए गॉस का नियम: | |||
यह समीकरण इस बारे में बात करता है कि विद्युत आवेश विद्युत क्षेत्र कैसे बनाते हैं। इसमें कहा गया है कि किसी बंद सतह से गुजरने वाला कुल विद्युत प्रवाह (इसे विद्युत क्षेत्र रेखाओं का प्रवाह समझें) उस सतह से घिरे कुल विद्युत आवेश के समानुपाती होता है, जो एक स्थिरांक से विभाजित होता है। गणितीय शब्दों में, इसे इस प्रकार लिखा जाता है: | |||
<math>\oint E \cdot dA = \frac{1}{\epsilon_0} * \int \rho dV</math> | |||
[[Category:वैद्युत चुंबकीय तरंगें]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] | [[Category:वैद्युत चुंबकीय तरंगें]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] |
Revision as of 18:30, 26 August 2023
Maxwell's equation
मैक्सवेल के समीकरण विद्युत चुंबकत्व में चार मौलिक समीकरणों का एक सेट हैं जो बताते हैं कि विद्युत और चुंबकीय क्षेत्र अंतरिक्ष के माध्यम से कैसे बातचीत करते हैं और फैलते हैं। ये समीकरण 19वीं शताब्दी में जेम्स क्लर्क मैक्सवेल द्वारा तैयार किए गए थे और इन्हें भौतिकी के इतिहास में सबसे महत्वपूर्ण उपलब्धियों में से एक माना जाता है।
बिजली के लिए गॉस का नियम:
यह समीकरण इस बारे में बात करता है कि विद्युत आवेश विद्युत क्षेत्र कैसे बनाते हैं। इसमें कहा गया है कि किसी बंद सतह से गुजरने वाला कुल विद्युत प्रवाह (इसे विद्युत क्षेत्र रेखाओं का प्रवाह समझें) उस सतह से घिरे कुल विद्युत आवेश के समानुपाती होता है, जो एक स्थिरांक से विभाजित होता है। गणितीय शब्दों में, इसे इस प्रकार लिखा जाता है: