AP के प्रथम n पदों का योग: Difference between revisions

From Vidyalayawiki

No edit summary
No edit summary
Line 1: Line 1:


[[Category:समांतर श्रेढ़ीयाँ]][[Category:गणित]][[Category:कक्षा-10]]
[[Category:समांतर श्रेढ़ीयाँ]][[Category:गणित]][[Category:कक्षा-10]]
Sum of first ''n'' terms of an AP
पिछली इकाई में हमने समांतर श्रेणी के n<sup>th</sup> पद ( n<sup>th</sup> term) का मान निकालना सीख, हम जानते हैं कि एक समांतर श्रेणी में  (n terms)  n पद  होते हैं और यदि हमें उसे समांतर श्रेणी केप्रथम n  पदों का योग अर्थात ( sum of first n terms of an AP), निकालना है तो हमें एक सूत्र की जरूरत होगी क्योंकि यदि हम उन सभी पदों को जोड़ेंगे तो इसे हल करने में अधिक समय लगेगा तथा कभी-कभी यह विधि सही उत्तर भी नहीं देगी, इसलिए हम समांतर श्रेणी के पहले n terms को जोड़ने के लिए और उसका आसानी से हल निकालने के लिए एक सूत्र का उपयोग करते हैं
 
== समांतर श्रेणी केप्रथम n  पदों का योग ==
S<sub>n</sub>= n/2[ 2a + (n-1)d]
 
S<sub>n = समांतर श्रेणी  के प्रथम n  पदों का योग</sub>
 
a = पहला पद ( first term)
 
n = पदों की संख्या (number of terms)
 
d = सार्व अंतर (common difference)

Revision as of 11:33, 28 August 2023

पिछली इकाई में हमने समांतर श्रेणी के nth पद ( nth term) का मान निकालना सीख, हम जानते हैं कि एक समांतर श्रेणी में (n terms) n पद होते हैं और यदि हमें उसे समांतर श्रेणी केप्रथम n पदों का योग अर्थात ( sum of first n terms of an AP), निकालना है तो हमें एक सूत्र की जरूरत होगी क्योंकि यदि हम उन सभी पदों को जोड़ेंगे तो इसे हल करने में अधिक समय लगेगा तथा कभी-कभी यह विधि सही उत्तर भी नहीं देगी, इसलिए हम समांतर श्रेणी के पहले n terms को जोड़ने के लिए और उसका आसानी से हल निकालने के लिए एक सूत्र का उपयोग करते हैं

समांतर श्रेणी केप्रथम n पदों का योग

Sn= n/2[ 2a + (n-1)d]

Sn = समांतर श्रेणी के प्रथम n पदों का योग

a = पहला पद ( first term)

n = पदों की संख्या (number of terms)

d = सार्व अंतर (common difference)