उत्तल दर्पण: Difference between revisions

From Vidyalayawiki

No edit summary
No edit summary
Line 3: Line 3:
एक अवतल दर्पण कटोरे के अंदर की तरह अंदर की ओर मुड़ता है। जब प्रकाश को प्रतिबिंबित करने की बात आती है तो इन दर्पणों में कुछ वाकई दिलचस्प गुण होते हैं।
एक अवतल दर्पण कटोरे के अंदर की तरह अंदर की ओर मुड़ता है। जब प्रकाश को प्रतिबिंबित करने की बात आती है तो इन दर्पणों में कुछ वाकई दिलचस्प गुण होते हैं।


महत्वपूर्ण शर्तें:
== महत्वपूर्ण नामावली : ==


   वक्रता केंद्र (सी): एक बड़े वृत्त के बारे में सोचें जो दर्पण के वक्र पर बिल्कुल फिट बैठता है। इस वृत्त के केंद्र को वक्रता केंद्र कहा जाता है।
=====    वक्रता केंद्र (c): =====
एक बड़े वृत्त के बारे में सोचें जो दर्पण के वक्र पर बिल्कुल फिट बैठता है। इस वृत्त के केंद्र को वक्रता केंद्र कहा जाता है।


   शीर्ष (V): दर्पण की घुमावदार सतह का मध्यबिंदु।
=====    शीर्ष (V): =====
दर्पण की घुमावदार सतह का मध्यबिंदु।


   फोकस (एफ): अवतल दर्पण में एक विशेष बिंदु होता है जिसे फोकस कहा जाता है जहां समानांतर प्रकाश किरणें दर्पण से परावर्तित होने के बाद एकत्रित होती हैं।
=====    फोकस (f): =====
 
अवतल दर्पण में एक विशेष बिंदु होता है जिसे फोकस कहा जाता है जहां समानांतर प्रकाश किरणें दर्पण से परावर्तित होने के बाद   एकत्रित होती हैं।
गणितीय समीकरण:


== गणितीय समीकरण ==
दो समीकरण हमें यह समझने में मदद करेंगे कि अवतल दर्पण कैसे काम करते हैं: दर्पण समीकरण और आवर्धन समीकरण।
दो समीकरण हमें यह समझने में मदद करेंगे कि अवतल दर्पण कैसे काम करते हैं: दर्पण समीकरण और आवर्धन समीकरण।


   दर्पण समीकरण:
======    दर्पण समीकरण ======
 
   अवतल दर्पणों के लिए दर्पण समीकरण इस प्रकार है:
   अवतल दर्पणों के लिए दर्पण समीकरण इस प्रकार है:


Line 29: Line 30:
अवतल दर्पणों के लिए फोकल लंबाई (f) को सकारात्मक माना जाता है।
अवतल दर्पणों के लिए फोकल लंबाई (f) को सकारात्मक माना जाता है।


आवर्धन समीकरण:
====== आवर्धन समीकरण: ======
 
आवर्धन समीकरण इस प्रकार दिखता है:
आवर्धन समीकरण इस प्रकार दिखता है:


Line 50: Line 50:


   यदि वस्तु फोकस और दर्पण (f<u<2f) के बीच है, तो छवि आभासी (दर्पण के पीछे) और सीधी होती है।
   यदि वस्तु फोकस और दर्पण (f<u<2f) के बीच है, तो छवि आभासी (दर्पण के पीछे) और सीधी होती है।
यह सब एक साथ डालें:
अवतल दर्पण का उपयोग विभिन्न ऑप्टिकल उपकरणों जैसे दूरबीन और मेकअप दर्पण में किया जाता है। दर्पण समीकरण और आवर्धन सूत्र का उपयोग करके, हम अनुमान लगा सकते हैं कि छवियाँ कहाँ बनती हैं और वे अवतल दर्पणों में कैसे दिखाई देती हैं।
याद रखें, ये समीकरण हमें अवतल दर्पणों के साथ प्रकाश के व्यवहार को समझने में मदद करने वाले उपकरणों की तरह हैं।
[[Category:किरण प्रकाशिकी एवं प्रकाशिक यंत्र]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]]
[[Category:किरण प्रकाशिकी एवं प्रकाशिक यंत्र]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]]

Revision as of 18:04, 28 August 2023

Convex Mirror

एक अवतल दर्पण कटोरे के अंदर की तरह अंदर की ओर मुड़ता है। जब प्रकाश को प्रतिबिंबित करने की बात आती है तो इन दर्पणों में कुछ वाकई दिलचस्प गुण होते हैं।

महत्वपूर्ण नामावली :

   वक्रता केंद्र (c):

एक बड़े वृत्त के बारे में सोचें जो दर्पण के वक्र पर बिल्कुल फिट बैठता है। इस वृत्त के केंद्र को वक्रता केंद्र कहा जाता है।

   शीर्ष (V):

दर्पण की घुमावदार सतह का मध्यबिंदु।

   फोकस (f):

अवतल दर्पण में एक विशेष बिंदु होता है जिसे फोकस कहा जाता है जहां समानांतर प्रकाश किरणें दर्पण से परावर्तित होने के बाद एकत्रित होती हैं।

गणितीय समीकरण

दो समीकरण हमें यह समझने में मदद करेंगे कि अवतल दर्पण कैसे काम करते हैं: दर्पण समीकरण और आवर्धन समीकरण।

   दर्पण समीकरण

   अवतल दर्पणों के लिए दर्पण समीकरण इस प्रकार है:

f दर्पण की फोकल लंबाई है (यह मापता है कि दर्पण कितनी तीव्रता से प्रकाश को मोड़ता है)।

   v वह दूरी है जहां छवि बनती है (वास्तविक छवियों के लिए सकारात्मक, आभासी छवियों के लिए नकारात्मक)।

   u दर्पण से वस्तु की दूरी है (यदि वस्तु दर्पण के सामने है तो सकारात्मक, यदि पीछे है तो नकारात्मक)।

अवतल दर्पणों के लिए फोकल लंबाई (f) को सकारात्मक माना जाता है।

आवर्धन समीकरण:

आवर्धन समीकरण इस प्रकार दिखता है:

m=hi/ho=−v/u,

   m आवर्धन है.

   hi छवि की ऊंचाई है.

   ho​ वस्तु की ऊंचाई है।

ऋणात्मक चिन्ह का अर्थ है कि वस्तु की तुलना में प्रतिबिम्ब उल्टा है।

छवि निर्माण:

   यदि वस्तु दूर है (u बड़ा है), तो छवि फोकस के करीब बनती है ( v छोटा है), और यह उलटा और वास्तविक है।

   यदि वस्तु को फोकल लंबाई (u=2f) से दोगुनी दूरी पर रखा जाता है, तो छवि फोकस पर बनती है और उलटी और वास्तविक होती है।

   यदि वस्तु फोकस और दर्पण (f<u<2f) के बीच है, तो छवि आभासी (दर्पण के पीछे) और सीधी होती है।

यह सब एक साथ डालें:

अवतल दर्पण का उपयोग विभिन्न ऑप्टिकल उपकरणों जैसे दूरबीन और मेकअप दर्पण में किया जाता है। दर्पण समीकरण और आवर्धन सूत्र का उपयोग करके, हम अनुमान लगा सकते हैं कि छवियाँ कहाँ बनती हैं और वे अवतल दर्पणों में कैसे दिखाई देती हैं।

याद रखें, ये समीकरण हमें अवतल दर्पणों के साथ प्रकाश के व्यवहार को समझने में मदद करने वाले उपकरणों की तरह हैं।