AP के प्रथम n पदों का योग: Difference between revisions

From Vidyalayawiki

No edit summary
No edit summary
Line 1: Line 1:


[[Category:समांतर श्रेढ़ीयाँ]][[Category:गणित]][[Category:कक्षा-10]]
[[Category:समांतर श्रेढ़ीयाँ]][[Category:गणित]][[Category:कक्षा-10]]
पिछली इकाई में हमने समांतर श्रेणी के n<sup>th</sup> पद ( n<sup>th</sup> term) का मान निकालना सीख, हम जानते हैं कि एक समांतर श्रेणी में  (n terms)  n पद  होते हैं और यदि हमें उसे समांतर श्रेणी केप्रथम n  पदों का योग अर्थात ( sum of  first n terms of an AP), निकालना है तो हमें एक सूत्र की जरूरत होगी क्योंकि यदि हम उन सभी पदों को जोड़ेंगे तो इसे हल करने में अधिक समय लगेगा तथा कभी-कभी यह विधि सही उत्तर भी नहीं देगी, इसलिए हम समांतर श्रेणी के पहले n terms को जोड़ने के लिए और उसका आसानी से हल निकालने के लिए एक सूत्र का उपयोग करते हैं  
पिछली इकाई में हमने समांतर श्रेणी के n<sup>th</sup> पद ( n<sup>th</sup> term) का मान निकालना सीख, हम जानते हैं कि एक समांतर श्रेणी में  (n terms)  n पद  होते हैं और यदि हमें उसे समांतर श्रेणी के ,प्रथम n  पदों का योग अर्थात ( sum of  first n terms of an AP), निकालना है तो हमें एक सूत्र की जरूरत होगी क्योंकि यदि हम उन सभी पदों को जोड़ेंगे तो इसे हल करने में अधिक समय लगेगा ।  कभी-कभी यह विधि सही उत्तर भी नहीं देगी, इसलिए हम समांतर श्रेणी के पहले n terms को जोड़ने के लिए और उसका आसानी से हल निकालने के लिए एक सूत्र का उपयोग करते हैं


== समांतर श्रेणी केप्रथम n  पदों का योग ==
== समांतर श्रेणी केप्रथम n  पदों का योग ==
'''S<sub>n</sub>= n/2[ 2a + (n-1)d]'''




Line 59: Line 61:


d=15 ( common difference)
d=15 ( common difference)
सूत्र द्वारा,    a<sub>n</sub> = a + (n – 1)d


25<sup>th</sup>पद= a + (25-1)d
25<sup>th</sup>पद= a + (25-1)d

Revision as of 09:59, 1 September 2023

पिछली इकाई में हमने समांतर श्रेणी के nth पद ( nth term) का मान निकालना सीख, हम जानते हैं कि एक समांतर श्रेणी में (n terms) n पद होते हैं और यदि हमें उसे समांतर श्रेणी के ,प्रथम n पदों का योग अर्थात ( sum of first n terms of an AP), निकालना है तो हमें एक सूत्र की जरूरत होगी क्योंकि यदि हम उन सभी पदों को जोड़ेंगे तो इसे हल करने में अधिक समय लगेगा । कभी-कभी यह विधि सही उत्तर भी नहीं देगी, इसलिए हम समांतर श्रेणी के पहले n terms को जोड़ने के लिए और उसका आसानी से हल निकालने के लिए एक सूत्र का उपयोग करते हैं ।

समांतर श्रेणी केप्रथम n पदों का योग

Sn= n/2[ 2a + (n-1)d]


Sn = समांतर श्रेणी के प्रथम n पदों का योग

a = पहला पद ( first term)

n = पदों की संख्या (number of terms)

d = सार्व अंतर (common difference)

उदाहरण 1)-

1. समान्तर श्रेढ़ी : 1, 10, 19, 28 ………… के पहले 16 पदों का योग ज्ञात करो ।

हल – यहाँ पहला पद (a) first term = 1

सार्व अंतर (d) common difference = 10 – 1 = 9

पदों की संख्या (n) number of terms = 16, 

  S16 ( पहले 16 पदों का योग) =?

पहले n पदों के योग के सूत्र द्वारा, Sn= n/2[ 2a + (n-1)d]

मान रखने पर,   S16 = 16/2[2⨯1 + (16 – 1)9]

 S16 = 8[2 + 15⨯9]

  S16 = 8[2 + 135]

  S16 = 8[137]

  S16 = 1096

इसलिए, पहले 16 पदों का योग 1096 है।  

उदाहरण 2)-

किसी समांतर श्रेणी के प्रथम 14 पदों का योग 1505 है, तथा उसका पहला पद 10 है ,उसका 25thपद ज्ञात करें?

हल – यहाँ पहला पद (a) first term = 10

  S14 ( पहले 14 पदों का योग) = 1505

पदों की संख्या (n) number of terms = 14

पहले n पदों के योग के सूत्र द्वारा, Sn= n/2[ 2a + (n-1)d]

मान रखने पर, 1505= 14/2 [ 2 ⨯ 10 + ( 14-1)d]

1505= 7 ( 20+ 13d)

215= 20+ 13d

13d=195

d=15 ( common difference)

सूत्र द्वारा,    an = a + (n – 1)d

25thपद= a + (25-1)d

= 10+ 24 ⨯ 15

= 370

समांतर श्रेणी का 25th पद 370 है।