प्रकाश के प्रकीर्णन: Difference between revisions
Listen
No edit summary |
(→माई) |
||
(5 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
जब प्रकाश पदार्थ के साथ संपर्क करता है, तो वह प्रकीर्णन (स्कैटरिंग) नामक प्रक्रिया के कारण अपनी दिशा बदल सकता है। प्रकीर्णन तब होता है जब प्रकाश किसी माध्यम में कणों या अनियमितताओं के साथ संपर्क करता है, जिससे प्रकाश विभिन्न दिशाओं में पुनर्निर्देशित हो जाता है। यह घटना कई रोजमर्रा के अवलोकनों के लिए जिम्मेदार है, जैसे नीला आकाश, रंगीन सूर्यास्त और सूर्य की किरण में धूल के कणों की दृश्यता। | जब प्रकाश पदार्थ के साथ संपर्क करता है, तो वह प्रकीर्णन (स्कैटरिंग) नामक प्रक्रिया के कारण अपनी दिशा बदल सकता है। प्रकीर्णन तब होता है जब प्रकाश किसी माध्यम में कणों या अनियमितताओं के साथ संपर्क करता है, जिससे प्रकाश विभिन्न दिशाओं में पुनर्निर्देशित हो जाता है। यह घटना कई रोजमर्रा के अवलोकनों के लिए जिम्मेदार है, जैसे नीला आकाश, रंगीन सूर्यास्त और सूर्य की किरण में धूल के कणों की दृश्यता। | ||
प्रकीर्णन के दो प्राथमिक प्रकार | == प्रकीर्णन के दो प्राथमिक प्रकार == | ||
====== रेले प्रकीर्णन ====== | ====== रेले प्रकीर्णन ====== | ||
Line 18: | Line 18: | ||
तो, छोटी तरंग दैर्ध्य (जैसे नीली और बैंगनी रोशनी) लंबी तरंग दैर्ध्य (जैसे लाल और पीली रोशनी) की तुलना में अधिक बिखरती हैं, जिससे पता चलता है कि दिन के दौरान आकाश नीला क्यों दिखाई देता है। | तो, छोटी तरंग दैर्ध्य (जैसे नीली और बैंगनी रोशनी) लंबी तरंग दैर्ध्य (जैसे लाल और पीली रोशनी) की तुलना में अधिक बिखरती हैं, जिससे पता चलता है कि दिन के दौरान आकाश नीला क्यों दिखाई देता है। | ||
====== माई | ====== माई ====== | ||
तब होती है जब प्रकाश उन कणों के साथ संपर्क करता है जो प्रकाश की तरंग दैर्ध्य के आकार में तुलनीय होते हैं। रेले स्कैटरिंग के विपरीत, माई | तब होती है जब प्रकाश उन कणों के साथ संपर्क करता है जो प्रकाश की तरंग दैर्ध्य के आकार में तुलनीय होते हैं। रेले स्कैटरिंग के विपरीत, माई प्रकीर्णन तरंग दैर्ध्य पर दृढ़ता से निर्भर नहीं करता है। यह वायुमंडल में धूल और पानी की बूंदों जैसे बड़े कणों द्वारा प्रकाश के बिखरने के लिए जिम्मेदार है, जो बादल और कोहरे जैसी घटनाएं पैदा कर सकता है। | ||
जबकि | जबकि माई प्रकीर्णन, गणितीय रूप से अधिक जटिल है और इसमें प्रकीर्णन जैसा कोई सरल समीकरण नहीं है, इसका वर्णन किया जा सकता है। | ||
== सारांश == | |||
प्रकाश का प्रकीर्णन एक मौलिक ऑप्टिकल घटना है जहां प्रकाश किसी माध्यम में कणों या अनियमितताओं के साथ बातचीत के कारण अपनी दिशा बदलता है। रेले का प्रकीर्णन तब हावी होता है जब कण प्रकाश की तरंग दैर्ध्य से बहुत छोटे होते हैं, और यह आकाश के नीले रंग की व्याख्या करता है। माई प्रकीर्णन तब होता है जब कणों का आकार प्रकाश की तरंग दैर्ध्य के बराबर होता है और बड़े कणों द्वारा प्रकाश के प्रकीर्णन के लिए जिम्मेदार होता है। | |||
प्रकीर्णन के इन सिद्धांतों को समझना प्रकाशिकी और ऑप्टिकल उपकरण में आवश्यक है क्योंकि यह वैज्ञानिकों और इंजीनियरों को सूक्ष्मदर्शी, दूरबीन और स्पेक्ट्रोमीटर जैसे उपकरणों को डिजाइन करने में मदद करता है, जो पदार्थ के साथ बातचीत करते समय प्रकाश के व्यवहार पर निर्भर करते हैं। | |||
[[Category:किरण प्रकाशिकी एवं प्रकाशिक यंत्र]] | [[Category:किरण प्रकाशिकी एवं प्रकाशिक यंत्र]] | ||
[[Category:तरंग प्रकाशिकी]][[Category:कक्षा-12]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]][[Category:भौतिक विज्ञान]] | [[Category:तरंग प्रकाशिकी]][[Category:कक्षा-12]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]][[Category:भौतिक विज्ञान]] |
Latest revision as of 13:48, 4 September 2023
scattering of light
जब प्रकाश पदार्थ के साथ संपर्क करता है, तो वह प्रकीर्णन (स्कैटरिंग) नामक प्रक्रिया के कारण अपनी दिशा बदल सकता है। प्रकीर्णन तब होता है जब प्रकाश किसी माध्यम में कणों या अनियमितताओं के साथ संपर्क करता है, जिससे प्रकाश विभिन्न दिशाओं में पुनर्निर्देशित हो जाता है। यह घटना कई रोजमर्रा के अवलोकनों के लिए जिम्मेदार है, जैसे नीला आकाश, रंगीन सूर्यास्त और सूर्य की किरण में धूल के कणों की दृश्यता।
प्रकीर्णन के दो प्राथमिक प्रकार
रेले प्रकीर्णन
रेले प्रकीर्णन दिन के दौरान आकाश के नीले रंग के लिए जिम्मेदार प्रकीर्णन का प्रमुख प्रकार है। यह तब होता है जब प्रकाश प्रकाश की तरंग दैर्ध्य से बहुत छोटे कणों के साथ संपर्क करता है। रेले प्रकीर्णन (I) की तीव्रता तरंग दैर्ध्य (λ) की चौथी शक्ति के व्युत्क्रमानुपाती होती है और प्रकीर्णन कणों की संख्या घनत्व (N) के सीधे आनुपातिक होती है।
जहाँ:
I प्रकीर्णित प्रकाश की तीव्रता है।
λआपतित प्रकाश की तरंग दैर्ध्य है।
n प्रकीर्णन कणों का संख्या घनत्व है।
तो, छोटी तरंग दैर्ध्य (जैसे नीली और बैंगनी रोशनी) लंबी तरंग दैर्ध्य (जैसे लाल और पीली रोशनी) की तुलना में अधिक बिखरती हैं, जिससे पता चलता है कि दिन के दौरान आकाश नीला क्यों दिखाई देता है।
माई
तब होती है जब प्रकाश उन कणों के साथ संपर्क करता है जो प्रकाश की तरंग दैर्ध्य के आकार में तुलनीय होते हैं। रेले स्कैटरिंग के विपरीत, माई प्रकीर्णन तरंग दैर्ध्य पर दृढ़ता से निर्भर नहीं करता है। यह वायुमंडल में धूल और पानी की बूंदों जैसे बड़े कणों द्वारा प्रकाश के बिखरने के लिए जिम्मेदार है, जो बादल और कोहरे जैसी घटनाएं पैदा कर सकता है।
जबकि माई प्रकीर्णन, गणितीय रूप से अधिक जटिल है और इसमें प्रकीर्णन जैसा कोई सरल समीकरण नहीं है, इसका वर्णन किया जा सकता है।
सारांश
प्रकाश का प्रकीर्णन एक मौलिक ऑप्टिकल घटना है जहां प्रकाश किसी माध्यम में कणों या अनियमितताओं के साथ बातचीत के कारण अपनी दिशा बदलता है। रेले का प्रकीर्णन तब हावी होता है जब कण प्रकाश की तरंग दैर्ध्य से बहुत छोटे होते हैं, और यह आकाश के नीले रंग की व्याख्या करता है। माई प्रकीर्णन तब होता है जब कणों का आकार प्रकाश की तरंग दैर्ध्य के बराबर होता है और बड़े कणों द्वारा प्रकाश के प्रकीर्णन के लिए जिम्मेदार होता है।
प्रकीर्णन के इन सिद्धांतों को समझना प्रकाशिकी और ऑप्टिकल उपकरण में आवश्यक है क्योंकि यह वैज्ञानिकों और इंजीनियरों को सूक्ष्मदर्शी, दूरबीन और स्पेक्ट्रोमीटर जैसे उपकरणों को डिजाइन करने में मदद करता है, जो पदार्थ के साथ बातचीत करते समय प्रकाश के व्यवहार पर निर्भर करते हैं।