प्राकृत संख्याएँ: Difference between revisions

From Vidyalayawiki

(formatting changes done)
(formatting changes done)
Line 116: Line 116:
<math>16=16</math>
<math>16=16</math>


=== वितरणात्मक संपत्ति- ===
=== वितरणात्मक संपत्ति ===
प्राकृतिक संख्याओं के लिए वितरणात्मक गुण दो प्रकार के होते हैं, जोड़ पर गुणन का वितरणात्मक नियम और घटाव पर गुणन का वितरणात्मक नियम।
प्राकृतिक संख्याओं के लिए वितरणात्मक गुण दो प्रकार के होते हैं, जोड़ पर गुणन का वितरणात्मक नियम और घटाव पर गुणन का वितरणात्मक नियम।



Revision as of 17:29, 13 September 2023

प्राकृतिक संख्याएँ , संख्या प्रणाली का एक हिस्सा हैं, जिसमें 1 से तक की सभी सकारात्मक संख्याएँ शामिल हैं। प्राकृतिक संख्याओं को गिनती संख्याएँ भी कहा जाता है, क्योंकि इनमें शून्य या ऋणात्मक संख्याएँ शामिल नहीं होती हैं। को छोड़कर सभी पूर्णांकों को प्राकृतिक संख्या कहा जाता है। प्राकृतिक संख्याओं के समुच्चय में केवल धनात्मक पूर्णांक, जैसे आदि शामिल होते हैं। जैसा कि हम जानते हैं कि प्राकृतिक संख्याएं से प्रारंभ होकर अनंत तक जाती है ,अतः सबसे छोटी प्राकृतिक संख्या है ।

प्राकृतिक संख्याओं का समुच्चय

गणित में, प्राकृतिक संख्याओं के समुच्चय को को निम्नलिखित रूप में में व्यक्त किया जाता है ।

प्राकृतिक संख्याओं के समुच्चय को प्रतीक N द्वारा दर्शाया जाता है ।

प्राकृतिक संख्याओं को दर्शाने के अन्य तरीके निम्नवत हैं-

स्टेटमेंट रूप में से उत्पन्न संख्याओं का समुच्चय

रोस्टर रूप में

प्राकृतिक संख्याओं के उदाहरण

सभी धनात्मक पूर्णांक को प्राकृतिक संख्याओं कहा जाता है। प्राकृतिक संख्याओं के कुछ उदाहरण हैं-

तक ।

आईए अब जानते हैं कि, क्या भी एक प्राकृतिक संख्या होगी? इस सवाल का उत्तर होगा नहीं, क्योंकि एक ऋणात्मक पूर्णांक है ।

इसी क्रम में आईए जानते हैं कि क्या एक प्राकृतिक संख्या होगी ? इस सवाल का उत्तर है नहीं, क्योंकि एक धनात्मक पूर्णांक नहीं है ।

प्राकृतिक संख्याओं के प्रकार

प्राकृतिक संख्याओं को हम मुख्यतः दो भागों में विभाजित करते हैं- विषम प्राकृतिक संख्याएं तथा सम प्राकृतिक संख्याएं , आईए उनके बारे में जानते हैं ।

विषम प्राकृतिक संख्याएँ

वे प्राकृतिक संख्याएँ जो से विभाज्य नहीं हैं , और समुच्चय N से संबंधित हैं, उन्हें हम विषम प्राकृतिक संख्याएँ कहते हैं।

उदाहरण- विषम प्राकृतिक संख्याओं के उदाहरण हैं।

प्राकृतिक विषम संख्याओं के समुच्चय को हम के रूप में प्रदर्शित कर सकते हैं ।

सम प्राकृतिक संख्याएँ

वे प्राकृतिक संख्याएँ जो के गुणज होती हैं ,अर्थात से पूर्णतः विभाज्य होती हैं, उन्हें हम सम प्राकृतिक संख्याएँ कहते हैं।

उदाहरण- सम प्राकृतिक संख्याओं के उदाहरण हैं।

सम प्राकृतिक संख्याओं के समुच्चय को हम के रूप में प्रदर्शित कर सकते हैं ।

संख्या रेखा पर प्राकृतिक संख्याओं का निरूपण

प्राकृतिक संख्याएं
संख्या रेखा पर प्राकृतिक संख्याओं का निरूपण

संख्या रेखा पर प्राकृतिक संख्याओं का निरूपण के दाईं ओर सभी सकारात्मक पूर्णांकों द्वारा किया जाता है ।



प्राकृतिक संख्याओं के गुण

प्राकृतिक संख्याओं के गुण संख्याओं के गुणों से प्राप्त किए गए हैं। प्राकृतिक संख्याओं पर चार संक्रियाए- जोड़, घटाव, गुणा और भाग हम कर सकते हैं, जिसके परिणामस्वरूप प्राकृतिक संख्याओं की चार मुख्य विशेषताएँ प्राप्त होती हैं, जिन्हें नीचे दर्शाया गया है:-

  1. समापन संपत्ति
  2. क्रमचयी गुणधर्म
  3. साहचर्य संपत्ति
  4. वितरणात्मक संपत्ति

समापन संपत्ति

जब दो या दो से अधिक प्राकृतिक संख्याओं को जोड़ा और गुणा किया जाता है, तो परिणाम हमेशा एक प्राकृतिक संख्या होता है।

समापन गुण ( जोड़ के लिए): -

उदाहरण 1:

उदाहरण 2: आदि।

प्राकृतिक संख्याओं का योग हमेशा एक प्राकृतिक संख्या होता है।

गुणन समापन गुण है :-

उदाहरण 1:

उदाहरण 2: आदि।

यह दर्शाता है कि एक प्राकृतिक संख्या हमेशा दो प्राकृतिक संख्याओं का गुणनफल होती है ।

क्रमचयी गुणधर्म

यदि संख्याओं का क्रम बदल दिया जाए, तो भी दो प्राकृतिक संख्याओं का योग या गुणनफल वही रहता है ।

जोड़ का क्रमचयी गुणधर्म :

उदाहरण 1:

गुणन का क्रमचयी गुणधर्म:

उदाहरण 1:

साहचर्य संपत्ति -

प्राकृतिक पूर्णांकों को जोड़ते और गुणा करते समय, साहचर्य स्थिति सत्य होती है ।

जोड़ का साहचर्य गुण:

उदाहरण 1:

गुणन का साहचर्य गुण:

उदाहरण 1:

वितरणात्मक संपत्ति

प्राकृतिक संख्याओं के लिए वितरणात्मक गुण दो प्रकार के होते हैं, जोड़ पर गुणन का वितरणात्मक नियम और घटाव पर गुणन का वितरणात्मक नियम।

जोड़ पर गुणन का वितरणात्मक नियम:

उदाहरण 1:

घटाव पर गुणन की वितरणात्मक नियम:

उदाहरण 1: