तरंगाग्र: Difference between revisions

From Vidyalayawiki

Listen

Line 10: Line 10:
जहाँ:
जहाँ:


   A, B, और C तरंगाग्र की दिशा कोसाइन हैं, जो प्रसार की दिशा का प्रतिनिधित्व करते हैं।
*    A, B, और C तरंगाग्र की दिशा कोसाइन हैं, जो प्रसार की दिशा का प्रतिनिधित्व करते हैं।
 
*    D एक स्थिरांक है.
   D एक स्थिरांक है.


एक गोलाकार तरंगाग्र के लिए, जो एक बिंदु स्रोत से उत्पन्न होने वाली और सभी दिशाओं में फैलने वाली तरंगाग्र है, समीकरण है:
एक गोलाकार तरंगाग्र के लिए, जो एक बिंदु स्रोत से उत्पन्न होने वाली और सभी दिशाओं में फैलने वाली तरंगाग्र है, समीकरण है:
Line 20: Line 19:
जहाँ:
जहाँ:


   r बिंदु स्रोत से तरंगफ्रंट पर एक बिंदु तक की दूरी है।
*    r बिंदु स्रोत से तरंगफ्रंट पर एक बिंदु तक की दूरी है।
 
*    c तरंग की गति है।
   c तरंग की गति है।
*    t समय है.
 
   t समय है.


== प्रमुख बिंदु ==
== प्रमुख बिंदु ==

Revision as of 14:02, 15 September 2023

Wavefront

वेव ऑप्टिक्स में, वेवफ्रंट एक काल्पनिक सतह है जो अंतरिक्ष में उन बिंदुओं का प्रतिनिधित्व करती है जो एक प्रसार तरंग के समान चरण में हैं। अनिवार्य रूप से, यह समय के एक विशिष्ट क्षण में तरंग का एक स्नैपशॉट है, जो उन सभी बिंदुओं को दिखाता है जहां तरंग का आयाम और चरण समान है। वेवफ्रंट्स हमें यह देखने में मदद करते हैं कि तरंगें अंतरिक्ष में कैसे फैलती हैं।

गणितीय समीकरण

गणितीय समीकरणों का उपयोग करके वेवफ्रंट का वर्णन किया जा सकता है। समतल तरंगाग्र, जो एक दिशा में यात्रा करने वाला समतल तरंगाग्र है, के लिए समीकरण है:

जहाँ:

  •    A, B, और C तरंगाग्र की दिशा कोसाइन हैं, जो प्रसार की दिशा का प्रतिनिधित्व करते हैं।
  •    D एक स्थिरांक है.

एक गोलाकार तरंगाग्र के लिए, जो एक बिंदु स्रोत से उत्पन्न होने वाली और सभी दिशाओं में फैलने वाली तरंगाग्र है, समीकरण है:

r=ct

जहाँ:

  •    r बिंदु स्रोत से तरंगफ्रंट पर एक बिंदु तक की दूरी है।
  •    c तरंग की गति है।
  •    t समय है.

प्रमुख बिंदु

वेवफ्रंट प्रसार

जैसे ही एक वेवफ्रंट अंतरिक्ष में फैलता है, वेवफ्रंट पर प्रत्येक बिंदु तरंगों का एक नया स्रोत बन जाता है, जिससे एक नया वेवफ्रंट बनता है। यह प्रक्रिया जारी रहती है, जिससे तरंग मोर्चों की एक श्रृंखला बनती है।

प्रसार की दिशा

समतल तरंगाग्र के समीकरण में दिशा कोसाइन (AA, BB, और CC) उस दिशा को निर्धारित करते हैं जिसमें तरंगाग्र यात्रा कर रहा है। एक समतल तरंग के लिए, ये मान स्थिर होते हैं, जो दर्शाता है कि तरंगाग्र एक सीधी रेखा में चलता है।

तरंगाग्र का आकार

तरंगाग्र का आकार उस स्रोत और माध्यम पर निर्भर करता है जिसके माध्यम से तरंग फैल रही है। उदाहरण के लिए, किसी दूर के तारे से आने वाली प्रकाश तरंगें पृथ्वी तक पहुँचने पर लगभग समतल तरंगाग्र वाली हो सकती हैं, जबकि एक बिंदु स्रोत से आने वाली तरंगें, जैसे पानी में गिराए गए कंकड़ की तरह, गोलाकार तरंगाग्र होती हैं।

अनुप्रयोग

प्रकाशिकी में वेवफ्रंट को समझना आवश्यक है, जहां उनका उपयोग यह विश्लेषण करने के लिए किया जाता है कि प्रकाश तरंगें लेंस, दर्पण और अन्य ऑप्टिकल तत्वों के साथ कैसे संपर्क करती हैं। वेवफ्रंट का उपयोग भूकंप विज्ञान जैसे क्षेत्रों में भूकंप तरंगों का अध्ययन करने के लिए और इंजीनियरिंग में ध्वनि तरंगों का विश्लेषण करने के लिए भी किया जाता है।

समझने के लिए

वेवफ्रंट्स यह देखने और समझने के लिए एक मूल्यवान उपकरण प्रदान करते हैं कि प्रकाश और ध्वनि तरंगों सहित तरंगें अंतरिक्ष में कैसे चलती हैं। वे वैज्ञानिकों और इंजीनियरों को तरंग-आधारित प्रणालियों और प्रौद्योगिकियों को डिजाइन और अनुकूलित करने में मदद करते हैं।