AP के प्रथम n पदों का योग: Difference between revisions

From Vidyalayawiki

No edit summary
No edit summary
Line 1: Line 1:


[[Category:समांतर श्रेढ़ीयाँ]][[Category:गणित]][[Category:कक्षा-10]]
[[Category:समांतर श्रेढ़ीयाँ]][[Category:गणित]][[Category:कक्षा-10]]
एक समांतर श्रेणी में  <math>n</math> पद  होते हैं और यदि हमें उस समांतर श्रेढ़ी के प्रथम <math>n</math> पदों का योग निकालना है , तो हमें एक सूत्र की आवश्यकता होगी क्योंकि यदि हम उन सभी पदों को बिना सूत्र के जोड़ेंगे , तो इसे हल करने में अधिक समय लगेगा तथा कभी-कभी यह विधि सही उत्तर भी नहीं देगी । इसलिए हम समांतर श्रेणी के पहले  <math>n</math> पदों को जोड़ने के लिए और उसका आसानी से हल निकालने के लिए एक सूत्र का उपयोग करते हैं ।  
एक समांतर श्रेढ़ी में  <math>n</math> पद  होते हैं और यदि हमें उस समांतर श्रेढ़ी के प्रथम <math>n</math> पदों का योग निकालना है , तो हमें एक सूत्र की आवश्यकता होगी क्योंकि यदि हम उन सभी पदों को बिना सूत्र के जोड़ेंगे , तो इसे हल करने में अधिक समय लगेगा तथा कभी-कभी यह विधि सही उत्तर भी नहीं देगी । इसलिए हम समांतर श्रेणी के पहले  <math>n</math> पदों को जोड़ने के लिए और उसका आसानी से हल निकालने के लिए एक सूत्र का उपयोग करते हैं ।  


== समांतर श्रेढ़ी के प्रथम n  पदों का योग निकालने के लिए सूत्र ==
== समांतर श्रेढ़ी के प्रथम n  पदों का योग निकालने के लिए सूत्र ==

Revision as of 18:48, 15 September 2023

एक समांतर श्रेढ़ी में पद होते हैं और यदि हमें उस समांतर श्रेढ़ी के प्रथम पदों का योग निकालना है , तो हमें एक सूत्र की आवश्यकता होगी क्योंकि यदि हम उन सभी पदों को बिना सूत्र के जोड़ेंगे , तो इसे हल करने में अधिक समय लगेगा तथा कभी-कभी यह विधि सही उत्तर भी नहीं देगी । इसलिए हम समांतर श्रेणी के पहले पदों को जोड़ने के लिए और उसका आसानी से हल निकालने के लिए एक सूत्र का उपयोग करते हैं ।

समांतर श्रेढ़ी के प्रथम n पदों का योग निकालने के लिए सूत्र

मान लीजिए एक समांतर श्रेढ़ी है, जिसका पहला पद  तथा सार्व अंतर   है । इस श्रेढ़ी का पद होगा ।

मान लीजिए इस श्रेढ़ी के पदों का योग दर्शाता है , तो हम कह सकते हैं कि ,

उपर्युक्त दिए गए पदों को उल्टे क्रम मे लिखने पर,

उपर्युक्त दिए गए समीकरण एवं को पद अनुसार जोड़ने पर,

बार


समांतर श्रेढ़ी के पहले पदों का योग

पहला पद

पदों की संख्या

सार्व अंतर

उदाहरण 1

1. समान्तर श्रेढ़ी के पहले पदों का योग ज्ञात करो ।

हल

यहाँ, पहला पद

सार्व अंतर

पदों की संख्या

  ( पहले पदों का योग ) =?

पहले पदों के योग के सूत्र द्वारा,

=

अतः , समान्तर श्रेढ़ी के पहले पदों का योग है ।  

उदाहरण 2

किसी समांतर श्रेढ़ी के प्रथम पदों का योग है , तथा उसका पहला पद है , सार्व अंतर ज्ञात करें ?

हल

पहला पद  

( पहले पदों का योग) =

पदों की संख्या

पहले n पदों के योग के सूत्र द्वारा,

अतः , समान्तर श्रेढ़ी का सार्व अंतर है ।

अभ्यास प्रश्न

  1. प्रथम धनात्मक पूर्णांकों का योग ज्ञात कीजिए ।
  2. समान्तर श्रेढ़ी के पहले पदों का योग ज्ञात कीजिए , जिसका पद द्वारा दिए गया है ।