तंत्रिका आवेग: Difference between revisions
Listen
Ektasharma (talk | contribs) No edit summary |
Ektasharma (talk | contribs) No edit summary |
||
Line 2: | Line 2: | ||
[[File:Action Potential.gif|thumb|270x270px|तंत्रिका आवेग]] | [[File:Action Potential.gif|thumb|270x270px|तंत्रिका आवेग]] | ||
तंत्रिका आवेग विद्युत संकेतों की श्रृंखला है जो तंत्रिका आवेग या क्रिया क्षमता उत्पन्न करने के लिए डेंड्राइट से गुजरती है।तंत्रिका आवेग एक अक्षतंतु के नीचे की ओर जाने वाली उलटी ध्रुवता या विध्रुवण (क्रिया क्षमता) की एक लहर है।तंत्रिका आवेग एक न्यूरॉन के प्लाज्मा झिल्ली में विद्युत ढाल के अचानक उलट होने के कारण उत्पन्न होता है। | तंत्रिका आवेग विद्युत संकेतों की श्रृंखला है जो तंत्रिका आवेग या क्रिया क्षमता उत्पन्न करने के लिए डेंड्राइट से गुजरती है।तंत्रिका आवेग एक अक्षतंतु के नीचे की ओर जाने वाली उलटी ध्रुवता या विध्रुवण (क्रिया क्षमता) की एक लहर है।तंत्रिका आवेग एक न्यूरॉन के प्लाज्मा झिल्ली में विद्युत ढाल के अचानक उलट होने के कारण उत्पन्न होता है। | ||
== तंत्रिका आवेग के संचरण की प्रक्रिया == | |||
तंत्रिका आवेग एक विद्युत रासायनिक प्रक्रिया है जो कोशिका झिल्ली में आयनिक गति के माध्यम से प्रकट होती है।आवेग कोशिका की विश्राम झिल्ली क्षमता में सकारात्मक पक्ष की ओर परिवर्तन है, जिसे क्रिया क्षमता भी कहा जाता है।एक तंत्रिका आवेग एक न्यूरॉन के प्लाज्मा झिल्ली में विद्युत आवेश में अंतर के कारण होता है। | |||
[[File:Nerve impulse.gif|thumb|तंत्रिका आवेग के संचरण की प्रक्रिया]] | |||
[[File:Action potential propagation in unmyelinated axon.gif|thumb|अनमाइलिनेटेड एक्सोन में क्रिया संभावित प्रसार]] | |||
[[File:Nerve impulse Action Potential.PNG|thumb|तंत्रिका आवेग क्रिया क्षमता]] | |||
जब एक न्यूरॉन सक्रिय रूप से तंत्रिका आवेग को संचारित नहीं कर रहा है, तो इसे विश्राम अवस्था में कहा जाता है लेकिन तंत्रिका आवेग को प्रसारित करने के लिए तैयार है।जब कोई तंत्रिका विश्राम की स्थिति में होती है, तो सोडियम-पोटेशियम पंप न्यूरॉन की कोशिका झिल्ली में विद्युत आवेश में अंतर बनाए रखता है।जब तंत्रिका विश्रामकी अवस्था में होती है, तो अक्षतंतु में प्लाज्मा में प्रोटीन और पोटेशियम आयनों की उच्च सांद्रता होती है, जबकि सोडियम आयनों की सांद्रता कम होती है।लेकिन अक्षतंतु की परिधि में मौजूद द्रव में पोटेशियम आयनों की सांद्रता कम और सोडियम आयनों की उच्च सांद्रता होती है। इस अंतर के कारण एक सांद्रता प्रवणता स्थापित होती है।बाहरी उत्तेजना जब झिल्ली तक पहुँचती है तो इसकी पारगम्यता में परिवर्तन होता है और सोडियम आयन अंदर की ओर बढ़ने लगते हैं जिसके परिणामस्वरूप क्षमता सकारात्मक पक्ष की ओर बढ़ जाती है। इस घटना को विध्रुवण कहा जाता है।उत्तेजना स्थल पर विद्युत विभव अंतर को क्रिया विभव कहा जाता है।परिणामस्वरूप, विद्युत आवेग तंत्रिका तंतु के विध्रुवित भाग से एक्सोप्लाज्म में तंत्रिका तंतु के ध्रुवीकृत भाग में प्रवाहित होगा। लेकिन कोशिका की सतह पर धारा विपरीत दिशा में प्रवाहित हो रही है।इसके परिणामस्वरूप तंत्रिका तंतु में आगे एक नई क्रिया क्षमता उत्पन्न होती है।इससे सोडियम पोटैशियम पंप फिर से काम करने लगेगा और झिल्ली फिर से विश्राम की स्थिति में आ जाएगी।इसलिए, पुनर्ध्रुवीकरण मूल झिल्ली क्षमता स्थिति को बनाए रखने या पुनर्स्थापित करने में मदद करता है। |
Revision as of 20:32, 22 September 2023
तंत्रिका आवेग विद्युत संकेतों की श्रृंखला है जो तंत्रिका आवेग या क्रिया क्षमता उत्पन्न करने के लिए डेंड्राइट से गुजरती है।तंत्रिका आवेग एक अक्षतंतु के नीचे की ओर जाने वाली उलटी ध्रुवता या विध्रुवण (क्रिया क्षमता) की एक लहर है।तंत्रिका आवेग एक न्यूरॉन के प्लाज्मा झिल्ली में विद्युत ढाल के अचानक उलट होने के कारण उत्पन्न होता है।
तंत्रिका आवेग के संचरण की प्रक्रिया
तंत्रिका आवेग एक विद्युत रासायनिक प्रक्रिया है जो कोशिका झिल्ली में आयनिक गति के माध्यम से प्रकट होती है।आवेग कोशिका की विश्राम झिल्ली क्षमता में सकारात्मक पक्ष की ओर परिवर्तन है, जिसे क्रिया क्षमता भी कहा जाता है।एक तंत्रिका आवेग एक न्यूरॉन के प्लाज्मा झिल्ली में विद्युत आवेश में अंतर के कारण होता है।
जब एक न्यूरॉन सक्रिय रूप से तंत्रिका आवेग को संचारित नहीं कर रहा है, तो इसे विश्राम अवस्था में कहा जाता है लेकिन तंत्रिका आवेग को प्रसारित करने के लिए तैयार है।जब कोई तंत्रिका विश्राम की स्थिति में होती है, तो सोडियम-पोटेशियम पंप न्यूरॉन की कोशिका झिल्ली में विद्युत आवेश में अंतर बनाए रखता है।जब तंत्रिका विश्रामकी अवस्था में होती है, तो अक्षतंतु में प्लाज्मा में प्रोटीन और पोटेशियम आयनों की उच्च सांद्रता होती है, जबकि सोडियम आयनों की सांद्रता कम होती है।लेकिन अक्षतंतु की परिधि में मौजूद द्रव में पोटेशियम आयनों की सांद्रता कम और सोडियम आयनों की उच्च सांद्रता होती है। इस अंतर के कारण एक सांद्रता प्रवणता स्थापित होती है।बाहरी उत्तेजना जब झिल्ली तक पहुँचती है तो इसकी पारगम्यता में परिवर्तन होता है और सोडियम आयन अंदर की ओर बढ़ने लगते हैं जिसके परिणामस्वरूप क्षमता सकारात्मक पक्ष की ओर बढ़ जाती है। इस घटना को विध्रुवण कहा जाता है।उत्तेजना स्थल पर विद्युत विभव अंतर को क्रिया विभव कहा जाता है।परिणामस्वरूप, विद्युत आवेग तंत्रिका तंतु के विध्रुवित भाग से एक्सोप्लाज्म में तंत्रिका तंतु के ध्रुवीकृत भाग में प्रवाहित होगा। लेकिन कोशिका की सतह पर धारा विपरीत दिशा में प्रवाहित हो रही है।इसके परिणामस्वरूप तंत्रिका तंतु में आगे एक नई क्रिया क्षमता उत्पन्न होती है।इससे सोडियम पोटैशियम पंप फिर से काम करने लगेगा और झिल्ली फिर से विश्राम की स्थिति में आ जाएगी।इसलिए, पुनर्ध्रुवीकरण मूल झिल्ली क्षमता स्थिति को बनाए रखने या पुनर्स्थापित करने में मदद करता है।