दर्पण सूत्र तथा आवर्धन: Difference between revisions

From Vidyalayawiki

Listen

Line 37: Line 37:
====== आवर्धन को समझना ======
====== आवर्धन को समझना ======


*    यदि आवर्धन 1 (एम > 1) से अधिक है, तो छवि वस्तु से बड़ी होती है। यह एक आवर्धित छवि है.
*    यदि आवर्धन 1 (<math>M>1</math>) से अधिक है, तो छवि वस्तु से बड़ी होती है। यह एक आवर्धित छवि है.
*    यदि आवर्धन 1 (0 < M < 1) से कम है, तो छवि वस्तु से छोटी होती है। यह एक छोटी छवि है.
*    यदि आवर्धन 1 (<math>0 < M < 1</math>) से कम है, तो छवि वस्तु से छोटी होती है। यह एक छोटी छवि है.
*    यदि आवर्धन ऋणात्मक है, तो छवि वस्तु की तुलना में उलटी (उल्टी) बनती है।
*    यदि आवर्धन ऋणात्मक है, तो छवि वस्तु की तुलना में उलटी (उल्टी) बनती है।



Revision as of 17:21, 3 October 2023

Mirror Formula and Magnification

हम दर्पण सूत्र प्रकाशिकी में एक मौलिक अवधारणा है। इससे हमें यह समझने में मदद मिलती है कि दर्पण कैसे छवियाँ बनाते हैं, चाहे वे अवतल दर्पण हों या उत्तल दर्पण।

अवतल और उत्तल दर्पण के लिए दर्पण सूत्र

दर्पण सूत्र एक गणितीय समीकरण है जो वस्तु की दूरी (), छवि दूरी (), और दर्पण की फोकल लंबाई () से संबंधित है। इसे इस प्रकार व्यक्त किया गया है:

: दर्पण की फोकल लंबाई।

​: वस्तु की दूरी (दर्पण से वस्तु की दूरी)।

​: छवि दूरी (दर्पण से छवि की दूरी)।

मिरर फॉर्मूला को समझना

   समीकरण का बायां भाग (​) दर्पण की प्रकाश को अभिसरित या विसरित करने की क्षमता को दर्शाता है। एक सकारात्मक फोकल लंबाई () एक अभिसारी दर्पण (अवतल) को इंगित करती है, जबकि एक नकारात्मक फोकल लंबाई एक अपसारी दर्पण (उत्तल) को इंगित करती है।

समीकरण का दाहिना भाग (​) वस्तु की दूरी और छवि की दूरी को दर्पण की फोकल लंबाई से जोड़ता है। यह समीकरण यह गणना करने के लिए महत्वपूर्ण है कि वस्तु की स्थिति के आधार पर छवि कहाँ बनती है।

आवर्धन

परिचय

आवर्धन की अवधारणा बताती है कि वास्तविक वस्तु की तुलना में एक छवि कितनी बड़ी या छोटी है।

आवर्धन के लिए गणितीय समीकरण

आवर्धन () की गणना निम्नलिखित समीकरण का उपयोग करके की जाती है:

: आवर्धन.

छवि दूरी (सकारात्मक यदि छवि वस्तु के समान तरफ है)।

वस्तु की दूरी (यदि वस्तु दर्पण के सामने है तो सकारात्मक)।

आवर्धन को समझना
  •    यदि आवर्धन 1 () से अधिक है, तो छवि वस्तु से बड़ी होती है। यह एक आवर्धित छवि है.
  •    यदि आवर्धन 1 () से कम है, तो छवि वस्तु से छोटी होती है। यह एक छोटी छवि है.
  •    यदि आवर्धन ऋणात्मक है, तो छवि वस्तु की तुलना में उलटी (उल्टी) बनती है।

संक्षेप में

दर्पण सूत्र यह समझने के लिए आवश्यक है कि दर्पण छवियाँ कैसे बनाते हैं और वे छवियाँ कहाँ स्थित होती हैं। इसके अतिरिक्त, आवर्धन की अवधारणा हमें यह बताती है कि किसी छवि का आकार और अभिविन्यास वस्तु की तुलना में कैसा है। ये अवधारणाएँ प्रकाशिकी में मूलभूत हैं और विभिन्न ऑप्टिकल उपकरणों में दर्पणों के व्यवहार का विश्लेषण करने के लिए महत्वपूर्ण हैं। श्रृंगार दर्पण से लेकर दूरबीन तक, दर्पण हमारे दैनिक जीवन में एक महत्वपूर्ण भूमिका निभाते हैं, और इन सिद्धांतों को समझने से हमें उनकी कार्यक्षमता की सराहना करने में मदद मिलती है।