सैद्धांतिक प्रायिकता: Difference between revisions

From Vidyalayawiki

No edit summary
No edit summary
Line 1: Line 1:


[[Category:प्रायिकता]][[Category:गणित]][[Category:कक्षा-10]]
[[Category:प्रायिकता]][[Category:गणित]][[Category:कक्षा-10]]
Theoretical Probability
 
हम लोगो में से प्रत्येक ने जीवन में<ref>{{Cite web|url=https://byjus.com/maths/theoretical-probability/|title=परिभाषा}}</ref> कई परिस्थितियों का सामना किया होगा जहां हमें  जोखिम लेना पड़ा होगा । स्थिति के आधार पर कुछ हद तक यह अनुमान लगाया जा सकता है कि कोई विशेष घटना घटित होने वाली है या नहीं । किसी विशेष घटना के घटित होने की इस संभावना को हम प्रायिकता में अध्ययन करते हैं। सैद्धांतिक प्रायिकता सिद्धांत गणित की एक शाखा है जो किसी यादृच्छिक घटना के घटित होने की संभावना का पता लगाने से संबंधित है । किसी घटना के घटित होने की संभावना <math>0</math> और <math>1</math> के बीच होती है । यदि संभावना <math>0</math>  के करीब है तो इसका मतलब है कि घटना घटित होने की संभावना कम है । इसी तरह , यदि संभावना <math>1</math> के करीब है तो यह दर्शाता है कि घटना के घटित होने की संभावना अधिक है ।
==विशेषताएं==
#सैद्धांतिक प्रायिकता  को संभावित परिणामों की कुल संख्या से विभाजित अनुकूल परिणामों की संख्या के रूप में परिभाषित किया जा सकता है ।
#प्रायिकता निर्धारित करने के लिए कोई प्रयोग करने की आवश्यकता नहीं है<ref>{{Cite web|url=https://www.cuemath.com/data/theoretical-probability/|title=विशेषताएं}}</ref> । हालाँकि , उस घटना के घटित होने की संभावना ज्ञात करने के लिए स्थिति का ज्ञान आवश्यक है ।
#सैद्धांतिक प्रायिकता यह मानकर किसी घटना के घटित होने की संभावना की भविष्यवाणी करती है कि सभी घटनाओं के घटित होने की संभावना समान है ।
==सैद्धांतिक प्रायिकता ज्ञात करने का सूत्र==
सैद्धांतिक प्रायिकता ज्ञात करने का सूत्र निम्नलिखित हैं :
 
<math>P(E)=</math>अनुकूल परिणामों की संख्या/संभावित परिणामों की कुल संख्या
 
जहां , <math>P(E)=</math> सैद्धांतिक प्रायिकता है ।
==उदाहरण 1==
जब एक पासा फेंका जाता है तो <math>4</math> आने की प्रायिकता  ज्ञात कीजिए ।
 
हल
 
संभावित परिणामों की कुल संख्या = <math>6</math>  ( पासे के <math>6</math> फलक होते हैं अतः , संभावित परिणामों की कुल संख्या <math>6</math> होगी । )
 
प्रश्न में दिए गए कथन के अनुसार , अनुकूल परिणामों की संख्या = <math>1</math> ( पासे को फेंकने पर <math>4</math> एक बार आता है )
 
सैद्धांतिक प्रायिकता  के सूत्र के अनुसार ,
 
<math>P(E)=</math>अनुकूल परिणामों की संख्या/संभावित परिणामों की कुल संख्या
 
मान रखने पर ,
 
<math>P(E)=\frac{1}{6}</math>
 
अतः , जब एक पासा फेंका जाता है तो <math>4</math> आने की प्रायिकता <math>\frac{1}{6}</math> होगी ।
==उदाहरण 2==
एक पासा यादृच्छिक रूप से फेंका जाता है , सम संख्या के आने की प्रायिकता ज्ञात कीजिए ।
 
हल
 
संभावित परिणामों की कुल संख्या = <math>6</math>  ( पासे के <math>6</math> फलक होते हैं अतः , संभावित परिणामों की कुल संख्या <math>6</math> होगी । )
 
प्रश्न में दिए गए कथन के अनुसार , अनुकूल परिणामों की संख्या = <math>3</math> ( पासे को फेंकने पर <math>2,4,6</math> सम संख्या आ सकती हैं । )
 
सैद्धांतिक प्रायिकता  के सूत्र के अनुसार ,
 
<math>P(E)=</math>अनुकूल परिणामों की संख्या/संभावित परिणामों की कुल संख्या
 
मान रखने पर ,
 
<math>P(E)=\frac{3}{6}</math>
 
<math>P(E)=\frac{1}{2}</math>
 
अतः , जब एक पासा फेंका जाता है तो सम संख्या के आने की प्रायिकता <math>\frac{1}{2}</math> होगी ।
==अभ्यास प्रश्न==
एक बैग में एक लाल गेंद, एक नीली गेंद और एक पीली गेंद है, सभी गेंदें हैं उसी आकार की, रिया बिना देखे बैग से एक गेंद निकालती है । निम्नलिखित के निकलने की प्रायिकता ज्ञात कीजिये<ref>{{Cite book |title=mathematics ( ncert) |edition=Revised |pages=298}}</ref> :
#पीली गेंद
#लाल गेंद
#नीली गेंद
==संदर्भ==
<references />

Revision as of 10:12, 10 October 2023


हम लोगो में से प्रत्येक ने जीवन में[1] कई परिस्थितियों का सामना किया होगा जहां हमें जोखिम लेना पड़ा होगा । स्थिति के आधार पर कुछ हद तक यह अनुमान लगाया जा सकता है कि कोई विशेष घटना घटित होने वाली है या नहीं । किसी विशेष घटना के घटित होने की इस संभावना को हम प्रायिकता में अध्ययन करते हैं। सैद्धांतिक प्रायिकता सिद्धांत गणित की एक शाखा है जो किसी यादृच्छिक घटना के घटित होने की संभावना का पता लगाने से संबंधित है । किसी घटना के घटित होने की संभावना और के बीच होती है । यदि संभावना के करीब है तो इसका मतलब है कि घटना घटित होने की संभावना कम है । इसी तरह , यदि संभावना के करीब है तो यह दर्शाता है कि घटना के घटित होने की संभावना अधिक है ।

विशेषताएं

  1. सैद्धांतिक प्रायिकता को संभावित परिणामों की कुल संख्या से विभाजित अनुकूल परिणामों की संख्या के रूप में परिभाषित किया जा सकता है ।
  2. प्रायिकता निर्धारित करने के लिए कोई प्रयोग करने की आवश्यकता नहीं है[2] । हालाँकि , उस घटना के घटित होने की संभावना ज्ञात करने के लिए स्थिति का ज्ञान आवश्यक है ।
  3. सैद्धांतिक प्रायिकता यह मानकर किसी घटना के घटित होने की संभावना की भविष्यवाणी करती है कि सभी घटनाओं के घटित होने की संभावना समान है ।

सैद्धांतिक प्रायिकता ज्ञात करने का सूत्र

सैद्धांतिक प्रायिकता ज्ञात करने का सूत्र निम्नलिखित हैं :

अनुकूल परिणामों की संख्या/संभावित परिणामों की कुल संख्या

जहां , सैद्धांतिक प्रायिकता है ।

उदाहरण 1

जब एक पासा फेंका जाता है तो आने की प्रायिकता ज्ञात कीजिए ।

हल

संभावित परिणामों की कुल संख्या = ( पासे के फलक होते हैं अतः , संभावित परिणामों की कुल संख्या होगी । )

प्रश्न में दिए गए कथन के अनुसार , अनुकूल परिणामों की संख्या = ( पासे को फेंकने पर एक बार आता है )

सैद्धांतिक प्रायिकता के सूत्र के अनुसार ,

अनुकूल परिणामों की संख्या/संभावित परिणामों की कुल संख्या

मान रखने पर ,

अतः , जब एक पासा फेंका जाता है तो आने की प्रायिकता होगी ।

उदाहरण 2

एक पासा यादृच्छिक रूप से फेंका जाता है , सम संख्या के आने की प्रायिकता ज्ञात कीजिए ।

हल

संभावित परिणामों की कुल संख्या = ( पासे के फलक होते हैं अतः , संभावित परिणामों की कुल संख्या होगी । )

प्रश्न में दिए गए कथन के अनुसार , अनुकूल परिणामों की संख्या = ( पासे को फेंकने पर सम संख्या आ सकती हैं । )

सैद्धांतिक प्रायिकता के सूत्र के अनुसार ,

अनुकूल परिणामों की संख्या/संभावित परिणामों की कुल संख्या

मान रखने पर ,

अतः , जब एक पासा फेंका जाता है तो सम संख्या के आने की प्रायिकता होगी ।

अभ्यास प्रश्न

एक बैग में एक लाल गेंद, एक नीली गेंद और एक पीली गेंद है, सभी गेंदें हैं उसी आकार की, रिया बिना देखे बैग से एक गेंद निकालती है । निम्नलिखित के निकलने की प्रायिकता ज्ञात कीजिये[3] :

  1. पीली गेंद
  2. लाल गेंद
  3. नीली गेंद

संदर्भ

  1. "परिभाषा".
  2. "विशेषताएं".
  3. mathematics ( ncert) (Revised ed.). p. 298.