सैद्धांतिक प्रायिकता: Difference between revisions

From Vidyalayawiki

Line 92: Line 92:
== उदाहरण 4 ==
== उदाहरण 4 ==
दो खिलाड़ी , श्याम और मोहन , एक टेनिस मैच खेलते हैं । श्याम के मैच जीतने की प्रायिकता <math>0.63</math>  है ।  मोहन के मैच जीतने की प्रायिकता ज्ञात कीजिये ।
दो खिलाड़ी , श्याम और मोहन , एक टेनिस मैच खेलते हैं । श्याम के मैच जीतने की प्रायिकता <math>0.63</math>  है ।  मोहन के मैच जीतने की प्रायिकता ज्ञात कीजिये ।
हल


मान लीजिए कि श्याम के मैच जीतने की घटना <math>S</math> एवं मोहन के मैच जीतने की घटना <math>M</math> है ।  
मान लीजिए कि श्याम के मैच जीतने की घटना <math>S</math> एवं मोहन के मैच जीतने की घटना <math>M</math> है ।  

Revision as of 13:03, 10 October 2023


हम लोगो में से प्रत्येक ने जीवन में[1] कई परिस्थितियों का सामना किया होगा जहां हमें जोखिम लेना पड़ा होगा । स्थिति के आधार पर कुछ हद तक यह अनुमान लगाया जा सकता है कि कोई विशेष घटना घटित होने वाली है या नहीं । किसी विशेष घटना के घटित होने की इस संभावना को हम प्रायिकता में अध्ययन करते हैं। सैद्धांतिक प्रायिकता सिद्धांत गणित की एक शाखा है जो किसी यादृच्छिक घटना के घटित होने की संभावना का पता लगाने से संबंधित है । सैद्धांतिक प्रायिकता को शास्त्रीय प्रायिकता के रूप में भी जाना जाता है । किसी घटना के घटित होने की संभावना और के बीच होती है । यदि संभावना के करीब है तो इसका मतलब है कि घटना घटित होने की संभावना कम है । इसी तरह , यदि संभावना के करीब है तो यह दर्शाता है कि घटना के घटित होने की संभावना अधिक है ।

उदाहरण

  1. अठारहवीं शताब्दी के फ्रांसीसी प्रकृतिवादी कॉम्टे डी बफ़न ने एक सिक्का बार उछाला और चित प्राप्त हुए । इस प्रयोग में चित पाने की प्रायोगिक प्रायिकता
  2. ब्रिटेन के जे.ई. केरिच ने एक सिक्के को बार उछाला और चित प्राप्त हुए । इस प्रयोग में चित पाने की प्रायोगिक प्रायिकता
  3. सांख्यिकीविद् कार्ल पियर्सन ने एक सिक्के को बार उछाला और चित प्राप्त हुए । इस प्रयोग में चित पाने की प्रायोगिक प्रायिकता

जैसे-जैसे टॉस की संख्या बढ़ती है , चित की प्रायोगिक प्रायिकता संख्या अर्थात, के आसपास स्थिर होती दिख रही है , जिसे हम चित प्राप्त करने की सैद्धांतिक प्रायिकता कहते हैं ।

विशेषताएं

  1. सैद्धांतिक प्रायिकता को संभावित परिणामों की कुल संख्या से विभाजित अनुकूल परिणामों की संख्या के रूप में परिभाषित किया जा सकता है ।
  2. प्रायिकता निर्धारित करने के लिए कोई प्रयोग करने की आवश्यकता नहीं है[2] । हालाँकि , उस घटना के घटित होने की संभावना ज्ञात करने के लिए स्थिति का ज्ञान आवश्यक है ।
  3. सैद्धांतिक प्रायिकता यह मानकर किसी घटना के घटित होने की संभावना की भविष्यवाणी करती है कि सभी घटनाओं के घटित होने की संभावना समान है ।

सैद्धांतिक प्रायिकता ज्ञात करने का सूत्र

सैद्धांतिक प्रायिकता ज्ञात करने का सूत्र निम्नलिखित हैं :

अनुकूल परिणामों की संख्या / संभावित परिणामों की कुल संख्या

जहां , सैद्धांतिक प्रायिकता है ।

विभिन्न घटनाएँ

  1. प्रारम्भिक घटना [3]: ऐसी घटना जिसमें प्रयोग का केवल एक परिणाम होता है , उसे प्रारंभिक घटना कहा जाता है । सभी प्रारंभिक घटनाओं की प्रायिकता का योग होता है । उदाहरण के लिए , जब एक पासा फेंका जाता है तो आने की प्रायिकता प्रारम्भिक घटना होगी ।
  2. असंभव घटना : वह घटना है जिसके घटित होने की कोई संभावना नहीं होती उसे असंभव घटना कहा जाता है । अतः , एक असंभव घटना की प्रायिकता होती है । उदाहरण के लिए , जब एक पासा फेंका जाता है तो आने की प्रायिकता असंभव घटना होगी ।
  3. निश्चित घटना : वह घटना जो हमेशा घटित होती है उसे निश्चित घटना कहा जाता है । इसलिए किसी निश्चित घटना की प्रायिकता होती है। उदाहरण के लिए, जब हम एक पासा फेंकते हैं , तो से कम संख्या प्राप्त होना एक निश्चित घटना होगी ।
  4. पूरक घटनाएँ : दो घटनाएँ जो इस प्रकार मौजूद हैं कि एक घटना तब घटित होगी तभी जब दूसरी घटना घटित नहीं होगी उसे पूरक घटनाएँ कहा जाता है । दो घटनाओं को पूरक घटनाओं के रूप में वर्गीकृत करने के लिए उन्हें परस्पर अनन्य होना चाहिए । पूरक घटनाएँ तभी घटित हो सकती हैं जब दो परिणाम होते हैं । मान लीजिए एक घटना है, के पूरक को या के रूप में दर्शाया जाता है । पूरक घटनाओं की प्रायिकताओं का योग के बराबर होना चाहिए अर्थात

उदाहरण 1

जब एक पासा फेंका जाता है तो आने की प्रायिकता ज्ञात कीजिए ।

हल

संभावित परिणामों की कुल संख्या = ( पासे के फलक होते हैं अतः , संभावित परिणामों की कुल संख्या होगी । )

प्रश्न में दिए गए कथन के अनुसार , अनुकूल परिणामों की संख्या = ( पासे को फेंकने पर एक बार आता है )

सैद्धांतिक प्रायिकता के सूत्र के अनुसार ,

अनुकूल परिणामों की संख्या/संभावित परिणामों की कुल संख्या

मान रखने पर ,

अतः , जब एक पासा फेंका जाता है तो आने की प्रायिकता होगी ।

उदाहरण 2

एक पासा यादृच्छिक रूप से फेंका जाता है , सम संख्या के आने की प्रायिकता ज्ञात कीजिए ।

हल

संभावित परिणामों की कुल संख्या ( पासे के फलक होते हैं अतः , संभावित परिणामों की कुल संख्या होगी । )

प्रश्न में दिए गए कथन के अनुसार , अनुकूल परिणामों की संख्या ( पासे को फेंकने पर सम संख्या आ सकती हैं । )

सैद्धांतिक प्रायिकता के सूत्र के अनुसार ,

अनुकूल परिणामों की संख्या/संभावित परिणामों की कुल संख्या

मान रखने पर ,

अतः , जब एक पासा फेंका जाता है तो सम संख्या के आने की प्रायिकता होगी ।

उदाहरण 3

ताशों की अच्छी तरह से फेंटी गई गड्डी से एक पत्ता निकाला जाता है । प्रायिकता ज्ञात कीजिये कि पत्ता एक इक्का होगा ।

हल

संभावित परिणामों की कुल संख्या ( ताश की गड्डी में पत्ते होते है )

प्रश्न में दिए गए कथन के अनुसार , अनुकूल परिणामों की संख्या ( एक ताश की गड्डी मे इक्के होते है )

प्रायिकता के सूत्र के अनुसार ,

अनुकूल परिणामों की संख्या/संभावित परिणामों की कुल संख्या

मान रखने पर ,

अतः , प्रश्न में दिए गए कथन के अनुसार प्रायिकता होगी ।

उदाहरण 4

दो खिलाड़ी , श्याम और मोहन , एक टेनिस मैच खेलते हैं । श्याम के मैच जीतने की प्रायिकता है । मोहन के मैच जीतने की प्रायिकता ज्ञात कीजिये ।

हल

मान लीजिए कि श्याम के मैच जीतने की घटना एवं मोहन के मैच जीतने की घटना है ।

श्याम के मैच जीतने की प्रायिकता ( प्रश्न में दिए गए कथन के अनुसार )

मोहन के मैच जीतने की प्रायिकता

यह स्पष्ट है कि दोनों घटनाएँ पूरक घटनाएँ है , अर्थात ,

मान रखने पर ,

अतः , प्रश्न में दिए गए कथन के अनुसार प्रायिकता होगी ।

अभ्यास प्रश्न

एक बैग में एक लाल गेंद, एक नीली गेंद और एक पीली गेंद है, सभी गेंदें एक प्रकार की हैं , रिया बिना देखे बैग से एक गेंद निकालती है । निम्नलिखित के निकलने की प्रायिकता ज्ञात कीजिये :

  1. पीली गेंद
  2. लाल गेंद
  3. नीली गेंद

संदर्भ

  1. "परिभाषा".
  2. "विशेषताएं".
  3. MATHEMATICS( NCERT) (REVISED ed.). pp. 299–302.