मूलों की प्रकृति: Difference between revisions
Jaya agarwal (talk | contribs) |
m (added Category:Vidyalaya Completed using HotCat) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
[[Category:द्विघात समीकरण]][[Category:गणित]][[Category:कक्षा-10]] | [[Category:द्विघात समीकरण]][[Category:गणित]][[Category:कक्षा-10]] | ||
ऐसा समीकरण , जिन्हें हम <math>ax^2+bx+c=0</math> रूप में निरूपित कर सकते हैं , जहां <math>a,b,c</math> वास्तविक संख्याएं हैं | [[Category:Vidyalaya Completed]] | ||
ऐसा समीकरण , जिन्हें हम <math>ax^2+bx+c=0</math> रूप में निरूपित कर सकते हैं , जहां <math>a,b,c</math> वास्तविक संख्याएं हैं एवं <math>a\neq0</math> , उन्हें हम द्विघात समीकरण कहते हैं । इस समीकरण में <math>x</math> का मान द्विघात समीकरण का मूल कहलाता है । द्विघात समीकरण में केवल दो मूल होते हैं । इस इकाई में हम द्विघात समीकरण के मूलों की प्रकृति के बारे में जानेंगे । | |||
== द्विघात समीकरण के मूल एवं प्रकृति == | == द्विघात समीकरण के मूल एवं प्रकृति == | ||
Line 41: | Line 42: | ||
हमें ज्ञात हुआ कि विविक्तकर <math>D=40</math> अर्थात <math>D>0</math> हैं । | हमें ज्ञात हुआ कि विविक्तकर <math>D=40</math> अर्थात <math>D>0</math> हैं । | ||
अतः , उपर्युक्त द्विघात समीकरण <math>2x^2-4x-3=0</math> के दो भिन्न वास्तविक मूल होंगे । | अतः, उपर्युक्त द्विघात समीकरण <math>2x^2-4x-3=0</math> के दो भिन्न वास्तविक मूल होंगे । | ||
== उदाहरण 2 == | == उदाहरण 2 == |
Latest revision as of 13:21, 10 October 2023
ऐसा समीकरण , जिन्हें हम रूप में निरूपित कर सकते हैं , जहां वास्तविक संख्याएं हैं एवं , उन्हें हम द्विघात समीकरण कहते हैं । इस समीकरण में का मान द्विघात समीकरण का मूल कहलाता है । द्विघात समीकरण में केवल दो मूल होते हैं । इस इकाई में हम द्विघात समीकरण के मूलों की प्रकृति के बारे में जानेंगे ।
द्विघात समीकरण के मूल एवं प्रकृति
द्विघात समीकरण के मूल [1]निम्नलिखित सूत्र से दिए जाते हैं ;
यदि , हमें दो भिन्न वास्तविक मूल और मिलते हैं ।
यदि , हमें दो समान वास्तविक मूल और मिलते हैं ।
यदि , हमें कोई वास्तविक मूल नहीं मिलते हैं ।
अतः , हमें ज्ञात हुआ कि व्यंजक द्विघात समीकरण के मूलों की प्रकृति ज्ञात करता है तथा इसको हम विविक्तकर कहते हैं । इसको हम से निरूपित करते हैं ।
एक द्विघात समीकरण के मूलों की प्रकृति निम्नलिखित हैं ;
- दो भिन्न वास्तविक मूल ; यदि
- दो समान वास्तविक मूल ; यदि
- कोई वास्तविक मूल नहीं ; यदि
उदाहरण 1
द्विघात समीकरण के मूलों की प्रकृति ज्ञात कीजिए ।
हल
दिए गए समीकरण की तुलना द्विघात समीकरण के मानक रूप से करने पर , हमें प्राप्त होता है ।
विविक्तकर का मान ज्ञात करने पर,
हमें ज्ञात हुआ कि विविक्तकर अर्थात हैं ।
अतः, उपर्युक्त द्विघात समीकरण के दो भिन्न वास्तविक मूल होंगे ।
उदाहरण 2
का वह मान ज्ञात कीजिए , जिसके लिए द्विघात समीकरण के दो समान वास्तविक मूल हैं ।
हल
दिए गए समीकरण की तुलना द्विघात समीकरण के मानक रूप से करने पर , हमें प्राप्त होता है ।
हम जानते हैं कि द्विघात समीकरण के दो समान वास्तविक मूल होते हैं , यदि ; अर्थात
मे रखने पर ,
अतः , का मान होगा ।
अभ्यास प्रश्न
- द्विघात समीकरण के मूलों की प्रकृति ज्ञात कीजिए ।
- का वह मान ज्ञात कीजिए , जिसके लिए द्विघात समीकरण के दो समान वास्तविक मूल हैं ।
संदर्भ
- ↑ MATHEMATICS ( NCERT) (Revised ed.). pp. 44–47.