द्विघात बहुपद: Difference between revisions

From Vidyalayawiki

 
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:


[[Category:बहुपद]][[Category:गणित]][[Category:कक्षा-10]]
[[Category:बहुपद]][[Category:गणित]][[Category:कक्षा-10]]
[[Category:Vidyalaya Completed]]
द्विघात बहुपद  ऐसे बहुपद होते हैं जिसमें चर की उच्चतम घात अर्थात बहुपद की घात दो होती हैं । हम द्विघात बहुपद को  <math>ax^2+bx+c</math> रूप में निरूपित कर सकते हैं , जहाँ <math>a,b,c</math>  वास्तविक संख्याएं है एवं <math>a\neq0</math> हैं ।  
द्विघात बहुपद  ऐसे बहुपद होते हैं जिसमें चर की उच्चतम घात अर्थात बहुपद की घात दो होती हैं । हम द्विघात बहुपद को  <math>ax^2+bx+c</math> रूप में निरूपित कर सकते हैं , जहाँ <math>a,b,c</math>  वास्तविक संख्याएं है एवं <math>a\neq0</math> हैं ।  


Line 31: Line 32:


अतः , उपर्युक्त बहुपद के दो शून्यक <math>2,2</math>  है ।
अतः , उपर्युक्त बहुपद के दो शून्यक <math>2,2</math>  है ।
=== उदाहरण 2 ===
द्विघात बहुपद <math>p(x)=3x^2-x-4</math> का शून्यक ज्ञात कीजिए ।
हल
उपर्युक्त बहुपद का शून्यक ज्ञात करने के लिए  बहुपद  <math>p(x)=3x^2-x - 4</math>  को शून्य के बराबर रखते हैं ,
<math>p(x)=0</math>
<math>3x^2-x-4=0</math>
गुणनखंड करने पर ,
<math>3x^2-4x+3x-4=0</math>
<math>x(3x-4)+1(3x-4)=0</math>
<math>(x+1)(3x-4)=0</math>
<math>x=-1,\frac{4}{3}</math>
अतः , उपर्युक्त बहुपद के दो शून्यक <math>-1,\frac{4}{3}</math>  है ।
==द्विघात बहुपद के शून्यकों और गुणांको में संबंध<ref>{{Cite book |title=MATHEMATICS (NCERT) |isbn=81-7450-634-9 |edition='REVISED' |pages=18-23}}</ref>==
यदि <math>\alpha</math> और <math>\beta</math> द्विघात बहुपद  <math>p(x)=ax^2+bx+c</math> के शून्यक हैं , जहाँ  <math>a,b,c</math>  वास्तविक संख्याएं है एवं <math>a\neq0</math> हैं ,  और <math>(x-\alpha)</math> ,  <math>(x-\beta)</math> ;  <math>p(x)</math> के गुणनखंड हैं ,
<math>ax^2+bx+c= k(x-\alpha)(x-\beta)</math>  ,  जहां <math>k</math> एक अचर पद हैं ,
<math>=k[x^2-(\alpha+\beta)x+\alpha\beta]</math>
<math>=kx^2-k(\alpha+\beta)x+k\alpha\beta</math>
<math>x^2,x </math>  और अचर पद के गुणांकों की दोनों पक्षों पर तुलना करने पर ,
<math>a=k</math>  ,  <math>b=-k(\alpha+\beta)</math>  ,  <math>c=k\alpha\beta</math>
अतः हमें प्राप्त होता है कि ,
<math>\alpha+\beta= \frac{-b}{a}</math>
<math>\alpha\beta=\frac{c}{a}</math>
शून्यकों का योग <math>=</math> <math>\alpha+\beta= \frac{-b}{a}</math> <math>=</math> (<math>-x</math> का गुणांक/ <math>x^2</math> का गुणांक )
शून्यकों का गुणनफल <math>=</math> <math>\alpha\beta=\frac{c}{a}</math> <math>=</math> ( अचर पद /  <math>x^2</math> का गुणांक )
इस प्रकार, एक द्विघात बहुपद का शून्यक उसके गुणांकों से संबंधित होता है ।
===उदाहरण===
द्विघात बहुपद  <math>p(x)=x^2-2x-8</math>  के शून्यक ज्ञात कीजिए और शून्यकों और गुणांक के बीच संबंध सत्यापित करें ।
हल
उपर्युक्त बहुपद का शून्यक ज्ञात करने के लिए  बहुपद <math>p(x)=x^2-2x-8</math>  को शून्य के बराबर रखते हैं ,
<math>p(x)=0</math>
<math>x^2-2x-8=0</math>
गुणनखंड करने पर ,
<math>x^2-4x+2x-8=0</math>
<math>x(x-4)+2(x-4)=0</math>
<math>(x-4)(x+2)=0</math>
<math>x=4,-2</math>
हम  बहुपद  <math>p(x)=x^2-2x-8</math>  को  <math>(x-4)(x+2)</math>  रूप में  निरूपित कर सकते हैं ।
इस प्रकार  उपर्युक्त बहुपद के शून्यक <math>4,-2</math> होंगे । ( <math>\alpha=4 , \beta=-2</math> )
बहुपद <math>p(x)=x^2-2x-8</math>  को <math>p(x)=ax^2+bx+c</math>  से तुलना करने पर <math>a=1,b=-2,c=-8</math>
शून्यकों का योग ,
<math>\alpha+\beta= \frac{-b}{a}</math><math>=</math> (<math>-x</math> का गुणांक / <math>x^2</math> का गुणांक )     
<math>4+(-2)</math><math>=</math> <math>\frac{-(-2)}{1}</math>
<math>2=2</math>
शून्यकों का गुणनफल ,
<math>\alpha\beta=\frac{c}{a}</math> <math>=</math> ( अचर पद /  <math>x^2</math> का गुणांक )
<math>(4)\times (-2)</math> <math>=</math> <math>\frac{-8}{1}</math>
<math>-8=</math><math>-8</math>       
अतः , द्विघात बहुपद <math>x^2-2x-8</math> के शून्यक <math>4,-2</math>  होंगे  ।  
== अभ्यास प्रश्न ==
# द्विघात बहुपद  <math>p(x)=x^2-15</math>  के शून्यक ज्ञात कीजिए और शून्यकों और गुणांक के बीच संबंध सत्यापित करें ।
# ऐसा द्विघात बहुपद ज्ञात कीजिए जिनके शून्यको का योग एवं गुणनफल क्रमशः <math>4</math> एवं <math>1</math> है ।
== संदर्भ ==

Latest revision as of 13:22, 10 October 2023

द्विघात बहुपद ऐसे बहुपद होते हैं जिसमें चर की उच्चतम घात अर्थात बहुपद की घात दो होती हैं । हम द्विघात बहुपद को रूप में निरूपित कर सकते हैं , जहाँ वास्तविक संख्याएं है एवं हैं ।

उदाहरण

आदि द्विघात बहुपद के उदाहरण हैं ।

द्विघात बहुपद के शून्यक

द्विघात बहुपद का शून्यक ज्ञात करने के लिए हम उस बहुपद को शून्य के बराबर रखते हैं और उसमें चर का मान ज्ञात करते हैं। चर का मान बहुपद का शून्यक या मूल कहलाता हैं जो बहुपद की घात पर निर्भर करता है । द्विघात बहुपद के दो शून्यक होते हैं ।

उदाहरण 1

द्विघात बहुपद का शून्यक ज्ञात कीजिए ।

हल

उपर्युक्त बहुपद का शून्यक ज्ञात करने के लिए बहुपद को शून्य के बराबर रखते हैं ,

गुणनखंड करने पर ,

अतः , उपर्युक्त बहुपद के दो शून्यक है ।

उदाहरण 2

द्विघात बहुपद का शून्यक ज्ञात कीजिए ।

हल

उपर्युक्त बहुपद का शून्यक ज्ञात करने के लिए बहुपद को शून्य के बराबर रखते हैं ,

गुणनखंड करने पर ,

अतः , उपर्युक्त बहुपद के दो शून्यक है ।

द्विघात बहुपद के शून्यकों और गुणांको में संबंध[1]

यदि और द्विघात बहुपद के शून्यक हैं , जहाँ वास्तविक संख्याएं है एवं हैं , और ,  ; के गुणनखंड हैं ,

, जहां एक अचर पद हैं ,

और अचर पद के गुणांकों की दोनों पक्षों पर तुलना करने पर ,

, ,

अतः हमें प्राप्त होता है कि ,

शून्यकों का योग ( का गुणांक/ का गुणांक )

शून्यकों का गुणनफल ( अचर पद / का गुणांक )

इस प्रकार, एक द्विघात बहुपद का शून्यक उसके गुणांकों से संबंधित होता है ।

उदाहरण

द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों और गुणांक के बीच संबंध सत्यापित करें ।

हल

उपर्युक्त बहुपद का शून्यक ज्ञात करने के लिए बहुपद को शून्य के बराबर रखते हैं ,

गुणनखंड करने पर ,

हम बहुपद को रूप में निरूपित कर सकते हैं ।

इस प्रकार उपर्युक्त बहुपद के शून्यक होंगे । ( )

बहुपद   को   से तुलना करने पर

शून्यकों का योग ,

( का गुणांक / का गुणांक )

शून्यकों का गुणनफल ,

( अचर पद / का गुणांक )

अतः , द्विघात बहुपद के शून्यक होंगे ।  

अभ्यास प्रश्न

  1. द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों और गुणांक के बीच संबंध सत्यापित करें ।
  2. ऐसा द्विघात बहुपद ज्ञात कीजिए जिनके शून्यको का योग एवं गुणनफल क्रमशः एवं है ।

संदर्भ

  1. MATHEMATICS (NCERT) ('REVISED' ed.). pp. 18–23. ISBN 81-7450-634-9.