नाभिकीय संलयन: Difference between revisions
Listen
No edit summary |
|||
(One intermediate revision by the same user not shown) | |||
Line 10: | Line 10: | ||
इन नाभिकों के टकराव और उसके बाद के संलयन के परिणामस्वरूप एक भारी नाभिक का निर्माण होता है और कणों की गतिज ऊर्जा और विद्युत चुम्बकीय विकिरण के रूप में ऊर्जा निकलती है, मुख्य रूप से उच्च-ऊर्जा फोटॉन (गामा किरणों) के रूप में। | इन नाभिकों के टकराव और उसके बाद के संलयन के परिणामस्वरूप एक भारी नाभिक का निर्माण होता है और कणों की गतिज ऊर्जा और विद्युत चुम्बकीय विकिरण के रूप में ऊर्जा निकलती है, मुख्य रूप से उच्च-ऊर्जा फोटॉन (गामा किरणों) के रूप में। | ||
परमाणु संलयन में निकलने वाली ऊर्जा द्रव्यमान के ऊर्जा में रूपांतरण का परिणाम है, जैसा कि आइंस्टीन के द्रव्यमान-ऊर्जा तुल्यता सिद्धांत ( | परमाणु संलयन में निकलने वाली ऊर्जा द्रव्यमान के ऊर्जा में रूपांतरण का परिणाम है, जैसा कि आइंस्टीन के द्रव्यमान-ऊर्जा तुल्यता सिद्धांत (<math>E=\Delta m\cdot c^2</math>) द्वारा वर्णित है। | ||
== गणितीय समीकरण == | == गणितीय समीकरण == | ||
आइंस्टीन का द्रव्यमान-ऊर्जा तुल्यता समीकरण, <math>E=m\cdot c ^2,</math> | आइंस्टीन का द्रव्यमान-ऊर्जा तुल्यता समीकरण, <math>E=m\cdot c ^2,</math> परमाणु संलयन में द्रव्यमान के ऊर्जा में रूपांतरण को समझने के लिए मौलिक है। | ||
परमाणु संलयन प्रतिक्रिया में ऊर्जा रिलीज ( | परमाणु संलयन प्रतिक्रिया में ऊर्जा रिलीज (<math>E</math>) की गणना प्रतिक्रिया से पहले और बाद में द्रव्यमान (<math>\Delta m</math>) में परिवर्तन का निर्धारण और द्रव्यमान-ऊर्जा तुल्यता (समीकरण) को लागू करके की जा सकती है: | ||
E= | <math>E=\Delta m\cdot c^2,</math> | ||
जहाँ: | जहाँ: |
Latest revision as of 12:11, 25 October 2023
Nuclear fusion
परमाणु संलयन एक परमाणु प्रतिक्रिया है जिसमें दो या दो से अधिक हल्के परमाणु नाभिक मिलकर एक भारी नाभिक बनाते हैं, जिससे जबरदस्त मात्रा में ऊर्जा निकलती है। यह वह प्रक्रिया है जो सूर्य और तारों को शक्ति प्रदान करती है और इसमें पृथ्वी पर स्वच्छ और वस्तुतः असीमित ऊर्जा उत्पादन की क्षमता है।
नाभिकीय संलयन की मूल अवधारणा
परमाणु संलयन प्रतिक्रियाएँ सूर्य और अन्य तारों को शक्ति प्रदान करती हैं। संलयन प्रतिक्रिया में, दो हल्के नाभिक विलीन होकर एक भारी नाभिक बनाते हैं। इस प्रक्रिया से ऊर्जा निकलती है क्योंकि परिणामी एकल नाभिक का कुल द्रव्यमान दो मूल नाभिकों के द्रव्यमान से कम होता है।
परमाणु संलयन में, दो हल्के परमाणु नाभिक, जैसे हाइड्रोजन के समस्थानिक (ड्यूटेरियम और ट्रिटियम), अत्यधिक उच्च तापमान और दबाव में एक साथ आते हैं। इन चरम स्थितियों द्वारा प्रदान की गई ऊर्जा सकारात्मक रूप से चार्ज किए गए प्रोटॉन के बीच इलेक्ट्रोस्टैटिक प्रतिकर्षण पर काबू पाती है।
इन नाभिकों के टकराव और उसके बाद के संलयन के परिणामस्वरूप एक भारी नाभिक का निर्माण होता है और कणों की गतिज ऊर्जा और विद्युत चुम्बकीय विकिरण के रूप में ऊर्जा निकलती है, मुख्य रूप से उच्च-ऊर्जा फोटॉन (गामा किरणों) के रूप में।
परमाणु संलयन में निकलने वाली ऊर्जा द्रव्यमान के ऊर्जा में रूपांतरण का परिणाम है, जैसा कि आइंस्टीन के द्रव्यमान-ऊर्जा तुल्यता सिद्धांत () द्वारा वर्णित है।
गणितीय समीकरण
आइंस्टीन का द्रव्यमान-ऊर्जा तुल्यता समीकरण, परमाणु संलयन में द्रव्यमान के ऊर्जा में रूपांतरण को समझने के लिए मौलिक है।
परमाणु संलयन प्रतिक्रिया में ऊर्जा रिलीज () की गणना प्रतिक्रिया से पहले और बाद में द्रव्यमान () में परिवर्तन का निर्धारण और द्रव्यमान-ऊर्जा तुल्यता (समीकरण) को लागू करके की जा सकती है:
जहाँ:
ऊर्जा रिलीज है।
द्रव्यमान दोष है, जो अभिकारकों के प्रारंभिक द्रव्यमान (प्रकाश नाभिक) और उत्पादों के अंतिम द्रव्यमान (भारी नाभिक) के बीच का अंतर है।
प्रकाश की गति है, लगभग मीटर प्रति सेकंड ।
द्रव्यमान दोष उस द्रव्यमान का प्रतिनिधित्व करता है जो संलयन प्रक्रिया के दौरान ऊर्जा में परिवर्तित हो जाता है।
आरेख
परमाणु संलयन की अवधारणा को दर्शाने वाला एक सरलीकृत आरेख इस तरह दिख सकता है:
Nuclear Fusion
---------------
| Deuterium | + | Tritium | --> | Helium | + | Neutron |
| Nucleus | | Nucleus | | Nucleus | | (Energy) |
| | | | | | | |
---------------
आरेख में, आप ड्यूटेरियम और ट्रिटियम नाभिक के संलयन को देख सकते हैं, जिसके परिणामस्वरूप हीलियम नाभिक, न्यूट्रॉन का निर्माण होता है और ऊर्जा निकलती है।
प्रमुख बिंदु
- परमाणु संलयन एक परमाणु प्रतिक्रिया है जिसमें हल्के परमाणु नाभिक मिलकर एक भारी नाभिक बनाते हैं, जिससे बड़ी मात्रा में ऊर्जा निकलती है।
- यह वह प्रक्रिया है जो सूर्य सहित सितारों को शक्ति प्रदान करती है, और इसमें पृथ्वी पर स्वच्छ और लगभग असीमित ऊर्जा प्रदान करने की क्षमता है।
संक्षेप में
परमाणु संलयन एक उल्लेखनीय प्रक्रिया है जो स्वच्छ और प्रचुर ऊर्जा उत्पादन का बड़ा वादा करती है। यह परमाणु भौतिकी के क्षेत्र में अनुसंधान और विकास का एक प्रमुख क्षेत्र है और पर्यावरणीय प्रभावों को कम करते हुए संभावित रूप से भविष्य की ऊर्जा जरूरतों को संबोधित कर सकता है।