जड़त्व आघूर्ण: Difference between revisions
Listen
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
जड़त्व आघूर्ण किसी वस्तु का भौतिक गुण है जो घूर्णी गति के प्रतिरोध को मापता है। यह रेखीय गति में द्रव्यमान के अनुरूप है और वर्णन करता है कि द्रव्यमान को घूर्णन के अक्ष के चारों ओर कैसे वितरित किया जाता है। जड़ता का क्षण बड़े पैमाने पर द्रव्यमान के वितरण और वस्तु के आकार दोनों पर निर्भर करता है। | जड़त्व आघूर्ण किसी वस्तु का भौतिक गुण है जो घूर्णी गति के प्रतिरोध को मापता है। यह रेखीय गति में द्रव्यमान के अनुरूप है और वर्णन करता है कि द्रव्यमान को घूर्णन के अक्ष के चारों ओर कैसे वितरित किया जाता है। जड़ता का क्षण बड़े पैमाने पर द्रव्यमान के वितरण और वस्तु के आकार दोनों पर निर्भर करता है। | ||
== गणितीय प्रतिनिधित्व == | |||
किसी वस्तु का जड़त्व आघूर्ण (<math>I</math>) द्रव्यमान तत्वों (<math>dm </math>) के उत्पादों के योग और परिक्रमण की धुरी से उनकी संबंधित दूरी (<math>r </math>) के गणितीय समीकरण | किसी वस्तु का जड़त्व आघूर्ण (<math>I</math>) द्रव्यमान तत्वों (<math>dm </math>) के उत्पादों के योग और परिक्रमण की धुरी से उनकी संबंधित दूरी (<math>r </math>) के गणितीय समीकरण | ||
Line 25: | Line 26: | ||
जड़त्व आघूर्ण परिक्रमण के चुने हुए अक्ष पर निर्भर करता है। विभिन्न आकृतियों के लिए, जड़त्वाघूर्ण की गणना करने के लिए विशिष्ट सूत्र हैं। यहाँ कुछ सामान्य आकृतियों के सूत्र दिए गए हैं: | जड़त्व आघूर्ण परिक्रमण के चुने हुए अक्ष पर निर्भर करता है। विभिन्न आकृतियों के लिए, जड़त्वाघूर्ण की गणना करने के लिए विशिष्ट सूत्र हैं। यहाँ कुछ सामान्य आकृतियों के सूत्र दिए गए हैं: | ||
बिन्दु संहति द्रव्यमान (प्वाइंट मास) | ===== बिन्दु संहति द्रव्यमान (प्वाइंट मास) ===== | ||
एक बिंदु द्रव्यमान (<math>m</math>) के लिए दूरी (<math>r</math>) पर धुरी के चारों ओर घूमते हुए: | एक बिंदु द्रव्यमान (<math>m</math>) के लिए दूरी (<math>r</math>) पर धुरी के चारों ओर घूमते हुए: | ||
Line 37: | Line 37: | ||
<math>I = (1/12) * m * L ^ 2</math> | <math>I = (1/12) * m * L ^ 2</math> | ||
एकरूप चक्रिका (डिस्क) | ===== एकरूप चक्रिका (डिस्क) ===== | ||
त्रिज्या (<math>R</math>) की एक समान डिस्क के लिए जो अपने केंद्र से गुजरने वाली धुरी के चारों ओर घूमती है: | त्रिज्या (<math>R</math>) की एक समान डिस्क के लिए जो अपने केंद्र से गुजरने वाली धुरी के चारों ओर घूमती है: | ||
<math>I = (1/2) * M * R^ 2</math> | <math>I = (1/2) * M * R^ 2</math> | ||
एकरूप गोलक | ===== एकरूप गोलक ===== | ||
त्रिज्या (<math>R</math>) के एक समान ठोस गोले के लिए, जो अपने केंद्र से होकर गुजरने वाली धुरी के चारों ओर घूमता है: | त्रिज्या (<math>R</math>) के एक समान ठोस गोले के लिए, जो अपने केंद्र से होकर गुजरने वाली धुरी के चारों ओर घूमता है: | ||
Revision as of 11:01, 20 November 2023
Moment of inertia
जड़त्व आघूर्ण किसी वस्तु का भौतिक गुण है जो घूर्णी गति के प्रतिरोध को मापता है। यह रेखीय गति में द्रव्यमान के अनुरूप है और वर्णन करता है कि द्रव्यमान को घूर्णन के अक्ष के चारों ओर कैसे वितरित किया जाता है। जड़ता का क्षण बड़े पैमाने पर द्रव्यमान के वितरण और वस्तु के आकार दोनों पर निर्भर करता है।
गणितीय प्रतिनिधित्व
किसी वस्तु का जड़त्व आघूर्ण () द्रव्यमान तत्वों () के उत्पादों के योग और परिक्रमण की धुरी से उनकी संबंधित दूरी () के गणितीय समीकरण
द्वारा दिया जाता है।
सतत रूप में, इसे एक अभिन्न के रूप को
व्यक्त किया जा सकता है
जहाँ:
= जड़त्व आघूर्ण
= परिक्रमण की धुरी से दूरी
= द्रव्यमान तत्व
जड़त्व आघूर्ण परिक्रमण के चुने हुए अक्ष पर निर्भर करता है। विभिन्न आकृतियों के लिए, जड़त्वाघूर्ण की गणना करने के लिए विशिष्ट सूत्र हैं। यहाँ कुछ सामान्य आकृतियों के सूत्र दिए गए हैं:
बिन्दु संहति द्रव्यमान (प्वाइंट मास)
एक बिंदु द्रव्यमान () के लिए दूरी () पर धुरी के चारों ओर घूमते हुए:
एकरूप छड़:
लंबाई की एक समान छड़ के लिए () अपने केंद्र से गुजरने वाली धुरी के चारों ओर घूमती है:
एकरूप चक्रिका (डिस्क)
त्रिज्या () की एक समान डिस्क के लिए जो अपने केंद्र से गुजरने वाली धुरी के चारों ओर घूमती है:
एकरूप गोलक
त्रिज्या () के एक समान ठोस गोले के लिए, जो अपने केंद्र से होकर गुजरने वाली धुरी के चारों ओर घूमता है:
ये सूत्र एक सरलीकृत प्रतिनिधित्व प्रदान करते हैं, लेकिन अनियमित आकार की वस्तुओं या कई वस्तुओं की प्रणालियों के लिए जड़त्व आघूर्ण की गणना अधिक जटिल हो सकती है। जड़त्व आघूर्ण ,परिक्रमण (घूर्णी गतिकी) में एक आवश्यक मापदण्ड है और घूर्णी गति का वर्णन करने और घूर्णी संतुलन, घूर्णी त्वरण और कोणीय गति के संरक्षण से संबंधित समस्याओं का विश्लेषण करने में महत्वपूर्ण भूमिका निभाता है।