संबंधों के प्रकार: Difference between revisions

From Vidyalayawiki

(content added)
(content added)
 
Line 29: Line 29:
संबंधों को वेन आरेख और दिष्ट आलेख का उपयोग करके आलेखी रूप से भी दर्शाया जा सकता है।
संबंधों को वेन आरेख और दिष्ट आलेख का उपयोग करके आलेखी रूप से भी दर्शाया जा सकता है।


* '''वेन आरेख''': वेन आरेख एक आरेख है जो सेटों को दर्शाने के लिए अतिव्यापी वृत्तों का उपयोग करता है। किसी संबंध में क्रमित युग्मों को वृत्तों के अंदर बिंदुओं द्वारा दर्शाया जा सकता है।
* '''वेन आरेख''': वेन आरेख, एक आरेख है जो समुच्चयों को दर्शाने के लिए अतिव्यापी वृत्तों का उपयोग करता है। किसी संबंध में क्रमित युग्मों को वृत्तों के अंदर बिंदुओं द्वारा दर्शाया जा सकता है।
* '''दिष्ट आलेख''': दिष्ट आलेख, एक ऐसा आलेख होता है जिसके किनारों पर बाण चिन्ह होते हैं। किसी संबंध में क्रमित युग्मों को एक दिष्ट आलेख में किनारों द्वारा दर्शाया जा सकता है, जहां बाण चिन्ह पहले अवयव से दूसरे अवयव की ओर इंगित करता है।
* '''दिष्ट आलेख''': दिष्ट आलेख, एक ऐसा आलेख होता है जिसके किनारों पर बाण चिन्ह होते हैं। किसी संबंध में क्रमित युग्मों को एक दिष्ट आलेख में किनारों द्वारा दर्शाया जा सकता है, जहां बाण चिन्ह पहले अवयव से दूसरे अवयव की ओर इंगित करता है।


Line 36: Line 36:
गणित, कंप्यूटर विज्ञान और अन्य क्षेत्रों में संबंधों के विविध प्रकार के अनुप्रयोग हैं। उदाहरण के लिए, संबंधों का उपयोग सामाजिक जालक्रम में लोगों के बीच संबंधों को दर्शाने, समीकरणों की एक प्रणाली में समीकरणों को दर्शाने और आंकड़ाकोष(डेटाबेस) में  आँकडों(डेटा) को दर्शाने के लिए किया जाता है।
गणित, कंप्यूटर विज्ञान और अन्य क्षेत्रों में संबंधों के विविध प्रकार के अनुप्रयोग हैं। उदाहरण के लिए, संबंधों का उपयोग सामाजिक जालक्रम में लोगों के बीच संबंधों को दर्शाने, समीकरणों की एक प्रणाली में समीकरणों को दर्शाने और आंकड़ाकोष(डेटाबेस) में  आँकडों(डेटा) को दर्शाने के लिए किया जाता है।
== निष्कर्ष ==
== निष्कर्ष ==
गणित में संबंध एक मौलिक अवधारणा है जिसके विभिन्न प्रकार के अनुप्रयोग हैं। विभिन्न क्षेत्रों में समस्याओं के समाधान के लिए संबंधों की अवधारणा को समझना आवश्यक है।
[[Category:संबंध और फलन]][[Category:गणित]][[Category:कक्षा-12]]
[[Category:संबंध और फलन]][[Category:गणित]][[Category:कक्षा-12]]

Latest revision as of 14:19, 9 December 2023

भूमिका

गणित में, संबंध क्रमित युग्मों का एक समूह है। प्रत्येक क्रमित युग्म में दो अवयव होते हैं, जिन्हें पहला अवयव और दूसरा अवयव कहा जाता है। पहले अवयव को प्रायः निवेश(इनपुट) या प्रांत(डोमेन) कहा जाता है, जबकि दूसरे अवयव को निर्गम(आउटपुट) या परिसर(रेंज) कहा जाता है।

परिभाषा

समुच्चय से समुच्चय का संबंध कार्टेशियन गुणन का एक उपसमुच्चय है। दूसरे शब्दों में, एक संबंध क्रमित युग्मों का एक संग्रह है, जहां , में है और , में है।

उदाहरण:

समुच्चय और समुच्चय पर विचार करें। क्रमित युग्मों का समुच्चय से तक का संबंध है।

संबंधों के प्रकार

संबंध कई प्रकार के होते हैं। कुछ सबसे सामान्य प्रकारों में निम्नलिखित सम्मिलित हैं:

  • स्वतुल्य : एक संबंध स्वतुल्य होता है यदि के प्रत्येक अवयव के लिए, क्रमित युग्म , में है।
  • सममित: एक संबंध सममित होता है यदि में प्रत्येक क्रमित युग्म के लिए, क्रमित युग्म भी में हो।
  • संक्रामक : एक संबंध संक्रामक होता है यदि में प्रत्येक क्रमित युग्म और में प्रत्येक क्रमित युग्म के लिए, क्रमित युग्म भी में हो।

गणितीय समीकरण

ऐसे कई गणितीय समीकरण हैं जिनका उपयोग संबंधों का वर्णन करने के लिए किया जा सकता है। कुछ सबसे सामान्य समीकरणों में निम्नलिखित सम्मिलित हैं:

  • प्रांत(डोमेन) : किसी संबंध का प्रांत, के क्रमित युग्मों में सभी पहले अवयवों का समूह है। का प्रांत द्वारा दर्शाया जाता है।
  • परिसर(रेंज) : किसी संबंध का परिसर, के क्रमित युग्मों में सभी दूसरे अवयवों का समुच्चय है। के परिसर को द्वारा दर्शाया जाता है।
  • प्रतिलोम : किसी संबंध का प्रतिलोम वह संबंध है जिसमें क्रमित होते हैं जहां में है।
  • संयोजन : दो संबंधों और के संयोजन संबंध है जिसमें क्रमबद्ध युग्म सम्मिलित हैं जहां एक अवयव मौजूद है जैसे कि , में है और , में है.

आलेख

संबंधों को वेन आरेख और दिष्ट आलेख का उपयोग करके आलेखी रूप से भी दर्शाया जा सकता है।

  • वेन आरेख: वेन आरेख, एक आरेख है जो समुच्चयों को दर्शाने के लिए अतिव्यापी वृत्तों का उपयोग करता है। किसी संबंध में क्रमित युग्मों को वृत्तों के अंदर बिंदुओं द्वारा दर्शाया जा सकता है।
  • दिष्ट आलेख: दिष्ट आलेख, एक ऐसा आलेख होता है जिसके किनारों पर बाण चिन्ह होते हैं। किसी संबंध में क्रमित युग्मों को एक दिष्ट आलेख में किनारों द्वारा दर्शाया जा सकता है, जहां बाण चिन्ह पहले अवयव से दूसरे अवयव की ओर इंगित करता है।

संबंधों के अनुप्रयोग

गणित, कंप्यूटर विज्ञान और अन्य क्षेत्रों में संबंधों के विविध प्रकार के अनुप्रयोग हैं। उदाहरण के लिए, संबंधों का उपयोग सामाजिक जालक्रम में लोगों के बीच संबंधों को दर्शाने, समीकरणों की एक प्रणाली में समीकरणों को दर्शाने और आंकड़ाकोष(डेटाबेस) में आँकडों(डेटा) को दर्शाने के लिए किया जाता है।

निष्कर्ष

गणित में संबंध एक मौलिक अवधारणा है जिसके विभिन्न प्रकार के अनुप्रयोग हैं। विभिन्न क्षेत्रों में समस्याओं के समाधान के लिए संबंधों की अवधारणा को समझना आवश्यक है।