गोलीय दर्पण-प्राथमिक स्तर: Difference between revisions
Listen
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Spherical Mirror | Spherical Mirror | ||
गोलाकार दर्पण एक गोले के हिस्सों के आकार के होते हैं, और इनमें प्रकाश को प्रतिबिंबित और केंद्रित करने की अद्भुत क्षमता होती है। यह समझकर कि गोलाकार दर्पण कैसे काम करते हैं, दैनिक जीवन में उनके कई अनुप्रयोग कीये जा सकते हैं। | |||
== गोलाकार दर्पण के प्रकार == | == गोलाकार दर्पण के प्रकार == | ||
गोलाकार दर्पण दो मुख्य प्रकार के होते हैं: उत्तल और अवतल दर्पण। | गोलाकार दर्पण दो मुख्य प्रकार के होते हैं: | ||
[[File:2008-03-14 Convex mirror in Atlanta garage entrance.jpg|thumb|पार्किंग गैराज के प्रवेश द्वार के अंदर उत्तल दर्पण]] | |||
उत्तल और अवतल दर्पण। वे कैसा व्यवहार करते हैं,यह नीचे व्यक्त कीया गया है । | |||
===== अवतल दर्पण ===== | ===== अवतल दर्पण ===== | ||
Line 12: | Line 14: | ||
====== अभिसारी दर्पण ====== | ====== अभिसारी दर्पण ====== | ||
जब प्रकाश की समानांतर किरणें अवतल दर्पण से टकराती हैं, तो वे परावर्तित हो जाती हैं और दर्पण के सामने एक बिंदु पर एकत्रित (एक साथ आ जाती हैं) होती हैं। इस बिंदु को "फोकल पॉइंट" ( | जब प्रकाश की समानांतर किरणें अवतल दर्पण से टकराती हैं, तो वे परावर्तित हो जाती हैं और दर्पण के सामने एक बिंदु पर एकत्रित (एक साथ आ जाती हैं) होती हैं। इस बिंदु को "फोकल पॉइंट" (<math>f</math>) कहा जाता है। | ||
====== अपसारी दर्पण ====== | ====== अपसारी दर्पण ====== | ||
यदि वस्तु दर्पण के बहुत | यदि वस्तु दर्पण के बहुत निकट है, तो परावर्तित किरणें दर्पण के पीछे एक बिंदु से विचलित (फैलती हुई) दिखाई देती हैं, जिसे "आभासी फोकस" या "आभासी फोकल बिंदु" (<math>F</math>) कहा जाता है। इस स्थिति में, कोई वास्तविक छवि नहीं बनती है; यह एक आभासी छवि है. | ||
===== उत्तल दर्पण ===== | ===== उत्तल दर्पण ===== | ||
* उत्तल दर्पण चम्मच के पिछले भाग की तरह बाहर की ओर मुड़े होते हैं। | * उत्तल दर्पण चम्मच के पिछले भाग की तरह बाहर की ओर मुड़े होते हैं। | ||
* वस्तु की स्थिति की परवाह किए बिना, वे | * वस्तु की स्थिति की परवाह किए बिना, वे सदैव आभासी, छोटी और सीधी छवियां बनाते हैं। | ||
* परावर्तित किरणें इस प्रकार विसरित (फैलती) होती हैं मानो वे दर्पण के पीछे किसी बिंदु से आ रही हों। | * परावर्तित किरणें इस प्रकार विसरित (फैलती) होती हैं मानो वे दर्पण के पीछे किसी बिंदु से आ रही हों। | ||
== गणितीय समीकरण == | == गणितीय समीकरण == | ||
वस्तु की दूरी, छवि की दूरी और दर्पण की फोकल लंबाई के बीच संबंध को समझने के लिए दर्पण समीकरण का उपयोग कीया जात है। दर्पण समीकरण इस प्रकार है: | |||
<math>\frac{1}{f}=\frac{1}{d_o}+\frac{1}{d_i},</math> | <math>\frac{1}{f}=\frac{1}{d_o}+\frac{1}{d_i},</math> | ||
Line 33: | Line 35: | ||
<math>d_i</math>: छवि दूरी (दर्पण से छवि की दूरी)। | <math>d_i</math>: छवि दूरी (दर्पण से छवि की दूरी)। | ||
== आरेख == | |||
नीचे एक अवतल दर्पण का सरलीकृत चित्र दिया गया है जिसमें समानांतर किरणें एक केंद्र बिंदु पर एकत्रित होती हैं | |||
[[File:Concave mirror.svg|thumb|फोकस, फोकल लंबाई, वक्रता केंद्र, मुख्य अक्ष आदि को दर्शाने वाला अवतल दर्पण आरेख।|center]] | |||
और यहां उत्तल दर्पण का एक सरलीकृत आरेख है जिसमें समानांतर किरणें इस प्रकार विसरित होती हैं मानो वे दर्पण के पीछे आभासी फोकस से आ रही हों:[[File:Convex mirror1.svg|thumb|फोकस, फोकल लंबाई, वक्रता केंद्र, मुख्य अक्ष आदि को दर्शाने वाला उत्तल दर्पण आरेख।|center]] | |||
== संक्षेप में == | |||
दोनों ही प्रकार के गोलाकार दर्पण,प्रकाश को परावर्तित कर एक जादुई दर्पण की तरह हैं छवियां बना सकते हैं, वस्तुओं को बड़ा कर सकते हैं और दैनिक जीवन में कोने वाले उन स्थानों को देखने में सुविधा दे सकते हैं,जहां प्रत्यक्ष रूप से देखा नहीं जा सकता। दर्पण समीकरण को समझने से इन दर्पणों में प्रकाश के व्यवहार की भविष्यवाणी और गणना करने की सुविधा हो जाती है। प्रकाशकी(ऑप्टिक्स) का अध्ययन , प्रकाश की अद्भुत दुनिया की खोज करने और आस-पास की वस्तुओं के साथ कैसे संपर्क बनाए रखने में सुविधा करता है। | |||
[[Category:प्रकाश -परावर्तन तथा अपवर्तन]] | [[Category:प्रकाश -परावर्तन तथा अपवर्तन]] | ||
[[Category:कक्षा-10]] | [[Category:कक्षा-10]] | ||
[[Category:भौतिक विज्ञान]] | [[Category:भौतिक विज्ञान]] |
Latest revision as of 11:21, 18 December 2023
Spherical Mirror
गोलाकार दर्पण एक गोले के हिस्सों के आकार के होते हैं, और इनमें प्रकाश को प्रतिबिंबित और केंद्रित करने की अद्भुत क्षमता होती है। यह समझकर कि गोलाकार दर्पण कैसे काम करते हैं, दैनिक जीवन में उनके कई अनुप्रयोग कीये जा सकते हैं।
गोलाकार दर्पण के प्रकार
गोलाकार दर्पण दो मुख्य प्रकार के होते हैं:
उत्तल और अवतल दर्पण। वे कैसा व्यवहार करते हैं,यह नीचे व्यक्त कीया गया है ।
अवतल दर्पण
अवतल दर्पण चम्मच के अंदर की तरह अंदर की ओर मुड़े होते हैं।
वे दो तरह से प्रकाश को प्रतिबिंबित कर सकते हैं:
अभिसारी दर्पण
जब प्रकाश की समानांतर किरणें अवतल दर्पण से टकराती हैं, तो वे परावर्तित हो जाती हैं और दर्पण के सामने एक बिंदु पर एकत्रित (एक साथ आ जाती हैं) होती हैं। इस बिंदु को "फोकल पॉइंट" () कहा जाता है।
अपसारी दर्पण
यदि वस्तु दर्पण के बहुत निकट है, तो परावर्तित किरणें दर्पण के पीछे एक बिंदु से विचलित (फैलती हुई) दिखाई देती हैं, जिसे "आभासी फोकस" या "आभासी फोकल बिंदु" () कहा जाता है। इस स्थिति में, कोई वास्तविक छवि नहीं बनती है; यह एक आभासी छवि है.
उत्तल दर्पण
- उत्तल दर्पण चम्मच के पिछले भाग की तरह बाहर की ओर मुड़े होते हैं।
- वस्तु की स्थिति की परवाह किए बिना, वे सदैव आभासी, छोटी और सीधी छवियां बनाते हैं।
- परावर्तित किरणें इस प्रकार विसरित (फैलती) होती हैं मानो वे दर्पण के पीछे किसी बिंदु से आ रही हों।
गणितीय समीकरण
वस्तु की दूरी, छवि की दूरी और दर्पण की फोकल लंबाई के बीच संबंध को समझने के लिए दर्पण समीकरण का उपयोग कीया जात है। दर्पण समीकरण इस प्रकार है:
: दर्पण की फोकल लंबाई।
: वस्तु की दूरी (दर्पण से वस्तु की दूरी)।
: छवि दूरी (दर्पण से छवि की दूरी)।
आरेख
नीचे एक अवतल दर्पण का सरलीकृत चित्र दिया गया है जिसमें समानांतर किरणें एक केंद्र बिंदु पर एकत्रित होती हैं
और यहां उत्तल दर्पण का एक सरलीकृत आरेख है जिसमें समानांतर किरणें इस प्रकार विसरित होती हैं मानो वे दर्पण के पीछे आभासी फोकस से आ रही हों:
संक्षेप में
दोनों ही प्रकार के गोलाकार दर्पण,प्रकाश को परावर्तित कर एक जादुई दर्पण की तरह हैं छवियां बना सकते हैं, वस्तुओं को बड़ा कर सकते हैं और दैनिक जीवन में कोने वाले उन स्थानों को देखने में सुविधा दे सकते हैं,जहां प्रत्यक्ष रूप से देखा नहीं जा सकता। दर्पण समीकरण को समझने से इन दर्पणों में प्रकाश के व्यवहार की भविष्यवाणी और गणना करने की सुविधा हो जाती है। प्रकाशकी(ऑप्टिक्स) का अध्ययन , प्रकाश की अद्भुत दुनिया की खोज करने और आस-पास की वस्तुओं के साथ कैसे संपर्क बनाए रखने में सुविधा करता है।