विमाएँ: Difference between revisions
Listen
Line 1: | Line 1: | ||
Dimensions | Dimensions | ||
भौतिकी में, "विमाएँ" विभिन्न पहलुओं या मात्राओं को संदर्भित करते हैं जिनका उपयोग | भौतिकी में, "विमाएँ" विभिन्न पहलुओं या मात्राओं को संदर्भित करते हैं जिनका उपयोग आसपास की दुनिया का वर्णन करने के लिए किया जा सकता है। ये विमा विभिन्न भौतिक राशियों को समझने और मापने में सुविधा देती हैं। | ||
== सरल शब्दों में == | == सरल शब्दों में == |
Revision as of 15:15, 2 January 2024
Dimensions
भौतिकी में, "विमाएँ" विभिन्न पहलुओं या मात्राओं को संदर्भित करते हैं जिनका उपयोग आसपास की दुनिया का वर्णन करने के लिए किया जा सकता है। ये विमा विभिन्न भौतिक राशियों को समझने और मापने में सुविधा देती हैं।
सरल शब्दों में
एक खिलौना कार की कल्पना करने पर ,इसकी स्थिति का पूरी तरह से वर्णन करने के लिए, यह कहा जा सकता है की सकते हैं कि यह एक निश्चित बिंदु से 2 मीटर दाईं ओर और 3 मीटर आगे स्थित है। इस मामले में, दो विमाओं का उपयोग हुआ : एक दाएँ-बाएँ दिशा के लिए और दूसरा आगे-पीछे दिशा के लिए।
भौतिकी में,अंतरिक्ष में किसी वस्तु की स्थिति का वर्णन करने के लिए, प्रायः तीन मूलभूत विमाओं का उपयोग कीया जाता है। ये विमाआएं किसी वस्तु अथवआ स्थान की लंबाई, चौड़ाई और ऊंचाई (या गहराई) का वर्णन करती hहै। साथ ही साथ में, यह एक त्रि-विमीय अंतरिक्ष बनती है। इसे एक 3डी ग्रिड की तरह समझने पर इसके भीतर किसी भी स्थान पर वस्तुओं का पता लगाने की अनुमति मिलती है।
विमाओं का विश्लेषण
एक विमा (1डी)
एक सीधी रेखा की कल्पना करेने पर केवल एक ही विमा मिलती है- लंबाई। 1डी माप का एक उदाहरण एक सीधे पथ पर दो बिंदुओं के बीच की दूरी है।
दो विमा (2डी)
कागज के टुकड़े जैसी सपाट सतह की कल्पना करें। इसके दो विमा हैं- लंबाई और चौड़ाई। 2डी स्थान में किसी वस्तु की स्थिति का वर्णन करने के लिए,दो मापों की आवश्यकता होती है, जैसे कागज की लंबाई और चौड़ाई।
तीन विमा (3डी)
एक बॉक्स या एक कमरे की कल्पना करेने के लीए तीन विमआओं का उपयोग कीया जात है । ये तीन विमा-लंबाई, चौड़ाई और ऊंचाई (या गहराई हैं) से समबंध रखती हैं । तीन मापों के साथ, 3डी अंतरिक्ष में किसी वस्तु की स्थिति का वर्णन कीया जा सकता है, जैसे बॉक्स की लंबाई, चौड़ाई और ऊंचाई।
संक्षेप में
ये विमा भौतिकी में मौलिक हैं क्योंकि ये आस-पास की दुनिया का सटीक वर्णन करने में मदद करते हैं। हालाँकि, आइंस्टीन के सापेक्षता के सिद्धांत या स्ट्रिंग सिद्धांत जैसे कुछ उन्नत सिद्धांतों में, भौतिक विज्ञानी परिचित तीन से परे अतिरिक्त विमाओं के साथ काम करते हैं। इन अतिरिक्त विमाओं की कल्पना करना काफी मुश्किल है क्योंकि वे सीधे सीधे बोधगम्य नहीं हैं, लेकिन वे ब्रह्मांड के मूलभूत नियमों को समझने में महत्वपूर्ण भूमिका निभाते हैं।