सारणिकों के गुणधर्म: Difference between revisions
(added content) |
No edit summary |
||
Line 4: | Line 4: | ||
=== परस्पर परिवर्तन गुणधर्म === | === परस्पर परिवर्तन गुणधर्म === | ||
The value of a determinant remains unchanged if the rows and the columns of a determinant are interchanged. | |||
Before the rows and the columns are interchanged | |||
<math>\bigtriangleup= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math> | |||
After the rows and the columns are interchanged | |||
<math>\bigtriangleup_1= \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\a_3 & b_3 & c_3 \end{vmatrix}</math> | |||
<math>\bigtriangleup=\bigtriangleup_1</math> | |||
'''Verification''' | |||
<math>\bigtriangleup= a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}</math> | |||
<math>\bigtriangleup= a_1 (b_2c_3-b_3c_2) - a_2 (b_1c_3-b_3c_1)+a_3 (b_1c_2-b_2c_1) </math> | |||
<math>\bigtriangleup= a_1b_2c_3-a_1b_3c_2 - a_2b_1c_3+a_2b_3c_1+a_3 b_1c_2-a_3b_2c_1 </math> | |||
<math>\bigtriangleup_1= a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}</math> | |||
<math>\bigtriangleup_1= a_1 (b_2c_3-c_2b_3) - b_1 (a_2c_3-c_2a_3)+c_1 (a_2b_3-b_2a_3) </math> | |||
<math>\bigtriangleup_1= a_1b_2c_3-a_1b_3c_2 - a_2b_1c_3+a_3b_1c_2+a_2 b_3c_1-a_3b_2c_1 </math> | |||
Hence <math>\bigtriangleup=\bigtriangleup_1</math> | |||
If the rows and columns of the matrix are interchanged, then the transpose of the matrix is obtained and the determinant value and the determinant of the transpose are equal. | |||
=== चिन्ह गुणधर्म === | === चिन्ह गुणधर्म === | ||
If any two rows or any two columns are interchanged, the sign of the value of the determinant changes. | |||
<math>\bigtriangleup= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math> | |||
After changing any two rows | |||
<math>\bigtriangleup_1= \begin{vmatrix} a_1 & a_2 & a_3 \\c_1 & c_2 & c_3 \\ b_1 & b_2 & b_3 \end{vmatrix}</math> | |||
<math>\bigtriangleup=\bigtriangleup_1</math> | |||
'''Verification''' | |||
<math>\bigtriangleup= a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}</math> | |||
<math>\bigtriangleup= a_1 (b_2c_3-b_3c_2) - a_2 (b_1c_3-b_3c_1)+a_3 (b_1c_2-b_2c_1) </math> | |||
<math>\bigtriangleup= a_1b_2c_3-a_1b_3c_2 - a_2b_1c_3+a_2b_3c_1+a_3 b_1c_2-a_3b_2c_1 </math> | |||
<math>\bigtriangleup= a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}</math> | |||
=== शून्य गुणधर्म === | === शून्य गुणधर्म === |
Revision as of 15:11, 24 January 2024
न्यूनतम गणना के साथ सारणिकों का मान ज्ञात करने के लिए सारणिकों के गुणों की आवश्यकता होती है। सारणिकों के गुण अवयवों, पंक्ति और स्तंभ संचालन पर आधारित होते हैं, और यह सारणिक का मान अति सुलभ विधि से ज्ञात करने में सहायता करता है।
सारणिकों के गुणधर्म
परस्पर परिवर्तन गुणधर्म
The value of a determinant remains unchanged if the rows and the columns of a determinant are interchanged.
Before the rows and the columns are interchanged
After the rows and the columns are interchanged
Verification
Hence
If the rows and columns of the matrix are interchanged, then the transpose of the matrix is obtained and the determinant value and the determinant of the transpose are equal.
चिन्ह गुणधर्म
If any two rows or any two columns are interchanged, the sign of the value of the determinant changes.
After changing any two rows
Verification