सारणिकों के गुणधर्म: Difference between revisions

From Vidyalayawiki

No edit summary
(added content)
 
(13 intermediate revisions by the same user not shown)
Line 4: Line 4:


=== परस्पर परिवर्तन गुणधर्म ===
=== परस्पर परिवर्तन गुणधर्म ===
The value of a determinant remains unchanged if the rows and the columns of a determinant are interchanged.
यदि किसी सारणिक की पंक्तियों और स्तंभों को परस्पर परिवर्तित कर दिया जाए तो उसका मान अपरिवर्तित रहता है।


Before the rows and the columns are interchanged
पंक्तियों और स्तंभों के परस्पर परिवर्तन से पहले


<math>\bigtriangleup=    \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math>  
<math>\bigtriangleup=    \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math>


After the rows and the columns are interchanged
पंक्तियों और स्तंभों के परस्पर परिवर्तन के बाद


<math>\bigtriangleup_1=    \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\a_3 & b_3 & c_3 \end{vmatrix}</math>
<math>\bigtriangleup_1=    \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\a_3 & b_3 & c_3 \end{vmatrix}</math>
Line 16: Line 16:
<math>\bigtriangleup=\bigtriangleup_1</math>
<math>\bigtriangleup=\bigtriangleup_1</math>


'''Verification'''
'''सत्यापन'''


<math>\bigtriangleup=  a_1  \begin{vmatrix}  b_2 & b_3 \\  c_2 & c_3 \end{vmatrix} - a_2  \begin{vmatrix}  b_1 & b_3 \\  c_1 & c_3 \end{vmatrix} + a_3  \begin{vmatrix}  b_1 & b_2 \\  c_1 & c_2 \end{vmatrix}</math>
<math>\bigtriangleup=  a_1  \begin{vmatrix}  b_2 & b_3 \\  c_2 & c_3 \end{vmatrix} - a_2  \begin{vmatrix}  b_1 & b_3 \\  c_1 & c_3 \end{vmatrix} + a_3  \begin{vmatrix}  b_1 & b_2 \\  c_1 & c_2 \end{vmatrix}</math>
Line 32: Line 32:
<math>\bigtriangleup_1=  a_1b_2c_3-a_1b_3c_2 - a_2b_1c_3+a_3b_1c_2+a_2 b_3c_1-a_3b_2c_1 </math>
<math>\bigtriangleup_1=  a_1b_2c_3-a_1b_3c_2 - a_2b_1c_3+a_3b_1c_2+a_2 b_3c_1-a_3b_2c_1 </math>


Hence <math>\bigtriangleup=\bigtriangleup_1</math>
अत:  <math>\bigtriangleup=\bigtriangleup_1</math>


If the rows and columns of the matrix are interchanged, then the transpose of the matrix is obtained and the determinant value and the determinant of the transpose are equal.
यदि आव्यूह की पंक्तियों और स्तंभों को परस्पर परिवर्तित कर दिया जाता है, तो आव्यूह का परिवर्त प्राप्त होता है और सारणिक मान और परिवर्त का सारणिक समान होते हैं।


=== चिन्ह गुणधर्म ===
=== चिन्ह गुणधर्म ===
If any two rows or any two columns are interchanged, the sign of the value of the determinant changes.
यदि किन्हीं दो पंक्तियों या किन्हीं दो स्तंभों को परस्पर परिवर्तित कर दिया जाए तो सारणिक के मान का चिह्न बदल जाता है।


<math>\bigtriangleup=    \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math>
<math>\bigtriangleup=    \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math>


After changing any two rows
किन्हीं दो पंक्तियों के परस्पर परिवर्तन के बाद


<math>\bigtriangleup_1=    \begin{vmatrix} a_1 & a_2 & a_3 \\c_1 & c_2 & c_3 \\ b_1 & b_2 & b_3 \end{vmatrix}</math>
<math>\bigtriangleup_1=    \begin{vmatrix} a_1 & a_2 & a_3 \\c_1 & c_2 & c_3 \\ b_1 & b_2 & b_3 \end{vmatrix}</math>
Line 47: Line 47:
<math>\bigtriangleup=\bigtriangleup_1</math>
<math>\bigtriangleup=\bigtriangleup_1</math>


'''Verification'''
'''सत्यापन'''


<math>\bigtriangleup=  a_1  \begin{vmatrix}  b_2 & b_3 \\  c_2 & c_3 \end{vmatrix} - a_2  \begin{vmatrix}  b_1 & b_3 \\  c_1 & c_3 \end{vmatrix} + a_3  \begin{vmatrix}  b_1 & b_2 \\  c_1 & c_2 \end{vmatrix}</math>
<math>\bigtriangleup=  a_1  \begin{vmatrix}  b_2 & b_3 \\  c_2 & c_3 \end{vmatrix} - a_2  \begin{vmatrix}  b_1 & b_3 \\  c_1 & c_3 \end{vmatrix} + a_3  \begin{vmatrix}  b_1 & b_2 \\  c_1 & c_2 \end{vmatrix}</math>
Line 59: Line 59:


=== शून्य गुणधर्म ===
=== शून्य गुणधर्म ===
यदि किसी सारणिक की कोई भी दो पंक्तियाँ (या स्तंभ) समान हैं (सभी संबंधित अवयव समान हैं), तो सारणिक का मान शून्य है।
'''सत्यापन'''
<math>\bigtriangleup=    \begin{vmatrix} 3 & 2 & 3 \\3 & 2 & 3 \\ 2 & 1 & 2 \end{vmatrix}</math>


<math>\bigtriangleup=  3  \begin{vmatrix}  2 & 3 \\  1 & 2 \end{vmatrix} - 2  \begin{vmatrix}  3 & 3 \\  2 & 2 \end{vmatrix} + 3  \begin{vmatrix}  3 & 2 \\  2 & 1 \end{vmatrix}</math>
<math>\bigtriangleup=  3 (4-3) -2 (6-6)+3 (3-4)  </math>
<math>\bigtriangleup=  3 (1) -2 (0)+3 (-1)  </math>
<math>\bigtriangleup=  3 -0 -3 =0  </math>
=== गुणन गुणधर्म ===
=== गुणन गुणधर्म ===
यदि किसी सारणिक की पंक्ति (या स्तंभ) के प्रत्येक अवयव को एक स्थिरांक <math>k</math> से गुणा किया जाता है, तो उसका मान <math>k</math> से गुणा हो जाता है
<math>\bigtriangleup=    \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math>  <math>\bigtriangleup_1=    \begin{vmatrix} ka_1 & ka_2 & ka_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math>
<math>\bigtriangleup_1=k\bigtriangleup</math>
'''सत्यापन'''
<math>\bigtriangleup=    \begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & 4 \\3 & 2 & 3 \end{vmatrix}</math>  <math>k=2</math>


<math>\bigtriangleup_1=    \begin{vmatrix} 2 & 2 & 2 \\ 2 & 1 & 4 \\3 & 2 & 3 \end{vmatrix}</math>
<math>\bigtriangleup=    \begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & 4 \\3 & 2 & 3 \end{vmatrix} = 1(3-8)-1(6-12)+1(4-3)=1(-5)-1(-6)+1(1)=-5+6+1=2</math>
<math>\bigtriangleup_1=    \begin{vmatrix} 2 & 2 & 2 \\ 2 & 1 & 4 \\3 & 2 & 3 \end{vmatrix} = 2(3-8)-2(6-12)+2(4-3)=2(-5)-2(-6)+2(1)=-10+12+2=4</math>
<math>\bigtriangleup_1=2\bigtriangleup</math>
=== योग गुणधर्म ===
=== योग गुणधर्म ===
यदि किसी सारणिक की किसी पंक्ति या स्तंभ के कुछ या सभी अवयवों को दो (या अधिक) पदों के योग के रूप में व्यक्त किया जाता है, तो सारणिक को दो (या अधिक) सारणिकों के योग के रूप में व्यक्त किया जा सकता है।
<math>\begin{vmatrix} a_1+d_1 & a_2+d_2 & a_3+d_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}=\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} d_1 & d_2 & d_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math>
'''सत्यापन'''
L.H.S =<math>\begin{vmatrix} a_1+d_1 & a_2+d_2 & a_3+d_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math>
<math>=(a_1+d_1)(b_2c_3-b_3c_2)- (a_2+d_2) (b_1c_3-b_3c_1)+(a_3+d_3)(b_1c_2-b_2c_1)  </math>


<math>=a_1(b_2c_3-b_3c_2)-a_2 (b_1c_3-b_3c_1)+a_3(b_1c_2-b_2c_1) +
d_1(b_2c_3-b_3c_2)-d_2 (b_1c_3-b_3c_1)+d_3(b_1c_2-b_2c_1) </math>
<math>=\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} d_1 & d_2 & d_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math>=R.H.S
=== अपरिवर्तनीय गुणधर्म ===
=== अपरिवर्तनीय गुणधर्म ===
यदि किसी सारणिक की किसी पंक्ति या स्तंभ के प्रत्येक अवयव  में, अन्य पंक्तियों (या स्तंभों) के संगत अवयवों  के समगुणकों को जोड़ दिया जाए, तो सारणिक का मान वही रहता है, अर्थात, सारणिक का मान वही रहता है यदि हम संचालन <math>R_i=R_i+kR_j</math> या  <math>C_i=C_i+kC_j</math>लागू करें।
<math>\bigtriangleup=    \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math>  <math>\bigtriangleup_1=    \begin{vmatrix} a_1+kc_1 & a_2+kc_2 & a_3+kc_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math>
यहां हमने तीसरी पंक्ति (<math>R_3</math>) के अवयवों को एक स्थिरांक <math>k</math> से गुणा किया है और उन्हें पहली पंक्ति (<math>R_1</math>) के संबंधित अवयवों में जोड़ा है। इसे प्रतीकात्मक रूप से <math>R_1=R_1+kR_3</math> के रूप में दर्शाया गया है <math>R_1=R_1+kR_3</math>
'''योग गुणधर्म''' का उपयोग करने पर 
<math>\bigtriangleup_1=    \begin{vmatrix} a_1+kc_1 & a_2+kc_2 & a_3+kc_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}
=\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} kc_1 & kc_2 & kc_3 \\ b_1 & b_2 & b_3 \\c_1 & c_2 & c_3 \end{vmatrix}</math>
<math>\bigtriangleup_1=\bigtriangleup+0</math>  (चूंकि <math>R_1</math> और <math>R_3</math> समानुपाती हैं)


<math>\bigtriangleup_1=\bigtriangleup</math>
=== त्रिकोणीय गुणधर्म ===
=== त्रिकोणीय गुणधर्म ===
यदि मुख्य विकर्ण के ऊपर या नीचे के अवयव शून्य के समान हैं, तो सारणिक का मूल्य विकर्ण आव्यूह के अवयवों  के गुणनफल के समान होता है।
<math>\bigtriangleup=    \begin{vmatrix} a_1 & a_2 & a_3 \\ 0 & b_2 & b_3 \\0 & 0 & c_3 \end{vmatrix}=\begin{vmatrix} a_1 & 0 & 0 \\ b_1 & b_2 & 0\\c_1 & c_2 & c_3 \end{vmatrix}= a_1b_2c_3</math>
'''सत्यापन'''
L.H.S <math>=a_1(b_2c_3-0)-a_2 (0-0)+a_3(0-0)=a_1b_2c_3 </math>
R.H.S = <math>=a_1(b_2c_3-0)-0 (b_1c_3-0)+0(b_1c_2-b_2c_1)=a_1b_2c_3 </math>
L.H.S = R.H.S
[[Category:सारणिक]][[Category:गणित]][[Category:कक्षा-12]]
[[Category:सारणिक]][[Category:गणित]][[Category:कक्षा-12]]

Latest revision as of 07:50, 30 January 2024

न्यूनतम गणना के साथ सारणिकों का मान ज्ञात करने के लिए सारणिकों के गुणों की आवश्यकता होती है। सारणिकों के गुण अवयवों, पंक्ति और स्तंभ संचालन पर आधारित होते हैं, और यह सारणिक का मान अति सुलभ विधि से ज्ञात करने में सहायता करता है।

सारणिकों के गुणधर्म

परस्पर परिवर्तन गुणधर्म

यदि किसी सारणिक की पंक्तियों और स्तंभों को परस्पर परिवर्तित कर दिया जाए तो उसका मान अपरिवर्तित रहता है।

पंक्तियों और स्तंभों के परस्पर परिवर्तन से पहले

पंक्तियों और स्तंभों के परस्पर परिवर्तन के बाद

सत्यापन


अत:

यदि आव्यूह की पंक्तियों और स्तंभों को परस्पर परिवर्तित कर दिया जाता है, तो आव्यूह का परिवर्त प्राप्त होता है और सारणिक मान और परिवर्त का सारणिक समान होते हैं।

चिन्ह गुणधर्म

यदि किन्हीं दो पंक्तियों या किन्हीं दो स्तंभों को परस्पर परिवर्तित कर दिया जाए तो सारणिक के मान का चिह्न बदल जाता है।

किन्हीं दो पंक्तियों के परस्पर परिवर्तन के बाद

सत्यापन


शून्य गुणधर्म

यदि किसी सारणिक की कोई भी दो पंक्तियाँ (या स्तंभ) समान हैं (सभी संबंधित अवयव समान हैं), तो सारणिक का मान शून्य है।

सत्यापन

गुणन गुणधर्म

यदि किसी सारणिक की पंक्ति (या स्तंभ) के प्रत्येक अवयव को एक स्थिरांक से गुणा किया जाता है, तो उसका मान से गुणा हो जाता है

सत्यापन

योग गुणधर्म

यदि किसी सारणिक की किसी पंक्ति या स्तंभ के कुछ या सभी अवयवों को दो (या अधिक) पदों के योग के रूप में व्यक्त किया जाता है, तो सारणिक को दो (या अधिक) सारणिकों के योग के रूप में व्यक्त किया जा सकता है।

सत्यापन

L.H.S =

=R.H.S

अपरिवर्तनीय गुणधर्म

यदि किसी सारणिक की किसी पंक्ति या स्तंभ के प्रत्येक अवयव में, अन्य पंक्तियों (या स्तंभों) के संगत अवयवों के समगुणकों को जोड़ दिया जाए, तो सारणिक का मान वही रहता है, अर्थात, सारणिक का मान वही रहता है यदि हम संचालन या लागू करें।

यहां हमने तीसरी पंक्ति () के अवयवों को एक स्थिरांक से गुणा किया है और उन्हें पहली पंक्ति () के संबंधित अवयवों में जोड़ा है। इसे प्रतीकात्मक रूप से के रूप में दर्शाया गया है

योग गुणधर्म का उपयोग करने पर

(चूंकि और समानुपाती हैं)

त्रिकोणीय गुणधर्म

यदि मुख्य विकर्ण के ऊपर या नीचे के अवयव शून्य के समान हैं, तो सारणिक का मूल्य विकर्ण आव्यूह के अवयवों के गुणनफल के समान होता है।

सत्यापन

L.H.S

R.H.S =

L.H.S = R.H.S