सदिशों का वियोजन: Difference between revisions
Listen
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Resolution of vectors | Resolution of vectors | ||
सदिशों का | सदिशों का वियोजन निर्दिष्ट अक्षों या दिशाओं के साथ एक सदिश को उसके घटकों में तोड़ने की प्रक्रिया को संदर्भित करता है। इसमें प्रत्येक घटक दिशा में सदिश के परिमाण का पता लगाना सम्मिलित है। यह प्रक्रिया इस अवधारणा पर आधारित है कि किसी भी सदिश को विभिन्न दिशाओं में सदिशों के योग के रूप में व्यक्त किया जा सकता है। | ||
सदिश वियोजन (सदिश रिज़ॉल्यूशन) के सबसे सामान्य प्रकार में एक सदिश को उसके क्षैतिज (<math>x</math>-अक्ष) और लंबवत (<math>y</math>-अक्ष) घटकों में तोड़ना शामिल है। यह प्रायः द्वि-आयामी समन्वय प्रणाली में किया जाता है। | सदिश वियोजन (सदिश रिज़ॉल्यूशन) के सबसे सामान्य प्रकार में एक सदिश को उसके क्षैतिज (<math>x</math>-अक्ष) और लंबवत (<math>y</math>-अक्ष) घटकों में तोड़ना शामिल है। यह प्रायः द्वि-आयामी समन्वय प्रणाली में किया जाता है। | ||
एक ऐसे सदिश <math>V</math> जो धनात्मक <math>x</math>-अक्ष के साथ <math>\theta </math> कोण बनाता हो पर विचार करने पर, सदिश <math>V</math> के परिमाण को <math>|V|</math> के रूप में निरूपित किया जा सकता है । इस सदिश को इसके घटकों में हल करने के लिए, | एक ऐसे सदिश <math>V</math> जो धनात्मक <math>x</math>-अक्ष के साथ <math>\theta </math> कोण बनाता हो पर विचार करने पर, सदिश <math>V</math> के परिमाण को <math>|V|</math> के रूप में निरूपित किया जा सकता है । इस सदिश को इसके घटकों में हल करने के लिए, त्रिकोणमितीय संबंधों का उपयोग करना पड़ता है। | ||
सदिश <math>V</math> का क्षैतिज घटक (<math>V_x</math>) सूत्र का उपयोग करके पाया जा सकता है: | सदिश <math>V</math> का क्षैतिज घटक (<math>V_x</math>) सूत्र का उपयोग करके पाया जा सकता है: | ||
Line 21: | Line 21: | ||
एक सदिश को उसके घटकों में विभाजित करके, हम इसके प्रभावों का विभिन्न दिशाओं में विश्लेषण कर सकते हैं या गति, बल या अन्य सदिश राशियों की गणना में इन घटकों का उपयोग कर सकते हैं। | एक सदिश को उसके घटकों में विभाजित करके, हम इसके प्रभावों का विभिन्न दिशाओं में विश्लेषण कर सकते हैं या गति, बल या अन्य सदिश राशियों की गणना में इन घटकों का उपयोग कर सकते हैं। | ||
प्रक्रिया को स्पष्ट करने के लिए, आइए | == एक उदाहरण से स्पष्टता == | ||
प्रक्रिया को स्पष्ट करने के लिए, आइए पर विचार करें: | |||
मान लीजिए कि हमारे पास <math>10 </math> इकाइयों के परिमाण वाला एक सदिश <math>V</math> है, जो धनात्मक <math>x</math>-अक्ष के साथ <math>30 </math> डिग्री का कोण बनाता है। इसके घटकों को खोजने के लिए, हम पहले बताए गए सूत्रों का उपयोग कर सकते हैं। | मान लीजिए कि हमारे पास <math>10 </math> इकाइयों के परिमाण वाला एक सदिश <math>V</math> है, जो धनात्मक <math>x</math>-अक्ष के साथ <math>30 </math> डिग्री का कोण बनाता है। इसके घटकों को खोजने के लिए, हम पहले बताए गए सूत्रों का उपयोग कर सकते हैं। |
Revision as of 11:20, 3 February 2024
Resolution of vectors
सदिशों का वियोजन निर्दिष्ट अक्षों या दिशाओं के साथ एक सदिश को उसके घटकों में तोड़ने की प्रक्रिया को संदर्भित करता है। इसमें प्रत्येक घटक दिशा में सदिश के परिमाण का पता लगाना सम्मिलित है। यह प्रक्रिया इस अवधारणा पर आधारित है कि किसी भी सदिश को विभिन्न दिशाओं में सदिशों के योग के रूप में व्यक्त किया जा सकता है।
सदिश वियोजन (सदिश रिज़ॉल्यूशन) के सबसे सामान्य प्रकार में एक सदिश को उसके क्षैतिज (-अक्ष) और लंबवत (-अक्ष) घटकों में तोड़ना शामिल है। यह प्रायः द्वि-आयामी समन्वय प्रणाली में किया जाता है।
एक ऐसे सदिश जो धनात्मक -अक्ष के साथ कोण बनाता हो पर विचार करने पर, सदिश के परिमाण को के रूप में निरूपित किया जा सकता है । इस सदिश को इसके घटकों में हल करने के लिए, त्रिकोणमितीय संबंधों का उपयोग करना पड़ता है।
सदिश का क्षैतिज घटक () सूत्र का उपयोग करके पाया जा सकता है:
सदिश का ऊर्ध्वाधर घटक () सूत्र :
का उपयोग करके पाया जा सकता है ।
ये सूत्र त्रिकोणमितीय कार्यों और साइन का उपयोग करते हैं, जो एक समकोण त्रिभुज की भुजाओं के अनुपात को उसके कोणों से संबंधित करते हैं।
एक सदिश को उसके घटकों में विभाजित करके, हम इसके प्रभावों का विभिन्न दिशाओं में विश्लेषण कर सकते हैं या गति, बल या अन्य सदिश राशियों की गणना में इन घटकों का उपयोग कर सकते हैं।
एक उदाहरण से स्पष्टता
प्रक्रिया को स्पष्ट करने के लिए, आइए पर विचार करें:
मान लीजिए कि हमारे पास इकाइयों के परिमाण वाला एक सदिश है, जो धनात्मक -अक्ष के साथ डिग्री का कोण बनाता है। इसके घटकों को खोजने के लिए, हम पहले बताए गए सूत्रों का उपयोग कर सकते हैं।
इकाइयां
इकाइयां
तो, सदिश को इसके क्षैतिज घटक इकाइयों और ऊर्ध्वाधर घटक इकाइयों में हल किया जा सकता है।
सदिशको उनके घटकों में हल करके, हम जटिल सदिश समस्याओं के विश्लेषण को सरल बना सकते हैं, विभिन्न दिशाओं में सदिश के प्रभाव को निर्धारित कर सकते हैं, और अलग-अलग घटकों का उपयोग करके अधिक आसानी से गणना कर सकते हैं।