सदिशों का वियोजन: Difference between revisions

From Vidyalayawiki

Listen

Line 20: Line 20:
ये सूत्र त्रिकोणमितीय फलनों और प्रतीक (साइन) का उपयोग करते हैं, जो एक समकोण त्रिभुज की भुजाओं के अनुपात को उसके कोणों से संबंधित करते हैं।
ये सूत्र त्रिकोणमितीय फलनों और प्रतीक (साइन) का उपयोग करते हैं, जो एक समकोण त्रिभुज की भुजाओं के अनुपात को उसके कोणों से संबंधित करते हैं।


एक सदिश को उसके घटकों में विभाजित करके, इसके प्रभावों का विभिन्न दिशाओं में विश्लेषण कीया जा सकता है या गति, बल या अन्य सदिश राशियों की गणना में इन घटकों का उपयोग कीया जा सकता है।
एक सदिश को उसके घटकों में विभाजित करके, इसके प्रभावों का विभिन्न दिशाओं में विश्लेषण कीया जा सकता है। इन घटकों का उपयोग कर ,इस से गति, बल या अन्य सदिश राशियों की गणना में सरलता या जाती है।


== एक उदाहरण से स्पष्टता ==
== एक उदाहरण से स्पष्टता ==

Revision as of 12:03, 3 February 2024

Resolution of vectors

सदिशों का वियोजन, निर्दिष्ट अक्षों या दिशाओं के साथ एक सदिश को उसके घटकों में तोड़ने की प्रक्रिया को संदर्भित करता है। इसमें प्रत्येक घटक दिशा में सदिश के परिमाण का पता लगाना सम्मिलित है। यह प्रक्रिया इस अवधारणा पर आधारित है कि किसी भी सदिश को विभिन्न दिशाओं में सदिशों के योग के रूप में व्यक्त किया जा सकता है।

सामान्य प्रकार के सादिश वियोजन

सदिश वियोजन (सदिश रिज़ॉल्यूशन) के सबसे सामान्य प्रकार में एक सदिश को उसके क्षैतिज (-अक्ष) और लंबवत (-अक्ष) घटकों में तोड़ना संमलित है। यह प्रायः द्वि-आयामी समन्वय प्रणाली में किया जाता है।

एक ऐसे सदिश , जो धनात्मक -अक्ष के साथ कोण बनाता हो पर विचार करने पर, सदिश के परिमाण को के रूप में निरूपित किया जा सकता है । इस सदिश को इसके घटकों में हल करने के लिए, त्रिकोणमितीय संबंधों का उपयोग करना पड़ता है।

सदिश का क्षैतिज घटक () सूत्र का उपयोग करके पाया जा सकता है:

सदिश का ऊर्ध्वाधर घटक () सूत्र :

का उपयोग करके पाया जा सकता है ।

ये सूत्र त्रिकोणमितीय फलनों और प्रतीक (साइन) का उपयोग करते हैं, जो एक समकोण त्रिभुज की भुजाओं के अनुपात को उसके कोणों से संबंधित करते हैं।

एक सदिश को उसके घटकों में विभाजित करके, इसके प्रभावों का विभिन्न दिशाओं में विश्लेषण कीया जा सकता है। इन घटकों का उपयोग कर ,इस से गति, बल या अन्य सदिश राशियों की गणना में सरलता या जाती है।

एक उदाहरण से स्पष्टता

प्रक्रिया को स्पष्ट करने के लिए:

इकाइयों के परिमाण वाला एक सदिश है, जो धनात्मक -अक्ष के साथ डिग्री का कोण बनाता है। इसके घटकों को खोजने के लिए, हम पहले बताए गए सूत्रों का उपयोग कर सकते हैं।

इकाइयां

इकाइयां

तो, सदिश को इसके क्षैतिज घटक इकाइयों और ऊर्ध्वाधर घटक इकाइयों में हल किया जा सकता है।

संक्षेप में

सदिश को उनके घटकों में हल करके,

  • जटिल सदिश समीकरण के विश्लेषण को सरल बनाया जा सकता है,
  • विभिन्न दिशाओं में सदिश के प्रभाव को निर्धारित कर सकते हैं,

और

  • अलग-अलग घटकों का उपयोग करके अधिक आसानी से गणना कर सकते हैं।