लोटनिक गति: Difference between revisions

From Vidyalayawiki

Listen

 
(2 intermediate revisions by the same user not shown)
Line 4: Line 4:


== समझने के लिए ==
== समझने के लिए ==
[[File:Rolling-motion-as-combination-of-translation-and-rotation.svg|thumb|किसी लुढ़कती वस्तु की गति को शुद्ध अनुवाद और शुद्ध घूर्णन के संयोजन के रूप में देखा जा सकता है।]]
[[File:Rolling-motion-as-combination-of-translation-and-rotation.svg|thumb|किसी लुढ़कती वस्तु की गति को शुद्ध स्थानान्तरण और शुद्ध घूर्णन के संयोजन के रूप में देखा जा सकता है।]]
लोटनिक गति को समझने के लिए, एक चपटी सतह पर पहिए के लुढ़कने के एक सरल उदाहरण की अवधारणा की जा सकती है। यहाँ मुख्य विचार यह है कि जैसे ही पहिया लुढ़कता है, यह अनुवादात्मक गति (द्रव्यमान के केंद्र की गति) और घूर्णी गति (अपनी धुरी के चारों ओर घूमना) दोनों से गुजरता है।
लोटनिक गति को समझने के लिए, एक चपटी सतह पर पहिए के लुढ़कने के एक सरल उदाहरण की अवधारणा की जा सकती है। यहाँ मुख्य विचार यह है कि जैसे ही पहिया लुढ़कता है, यह अनुवादात्मक गति (द्रव्यमान के केंद्र की गति) और घूर्णी गति (अपनी धुरी के चारों ओर घूमना) दोनों से गुजरता है।


Line 14: Line 14:


=====     घूर्णी बल =====
=====     घूर्णी बल =====
यह बल पहिए की घूर्णी गति के लिए उत्तरदायी होता है। जैसे ही पहिया लुढ़कता है, पहिया के केंद्र से उनकी अलग-अलग दूरी के कारण इसकी सतह पर बिंदुओं की गति अलग-अलग होती है। गति में यह अंतर एक बलाघूर्ण बनाता है, जिसके कारण पहिया घूमता है। घूर्णी बल टोक़ और पहिया की जड़ता के क्षण पर निर्भर करता है।
यह बल पहिए की घूर्णी गति के लिए उत्तरदायी होता है। जैसे ही पहिया लुढ़कता है, पहिया के केंद्र से उनकी अलग-अलग दूरी के कारण इसकी सतह पर बिंदुओं की गति अलग-अलग होती है। गति में यह अंतर एक बलाघूर्ण बनाता है, जिसके कारण पहिया घूमता है। घूर्णी बल टॉर्क और पहिया के जड़त्वाघूर्ण पर निर्भर करता है।


== गणितीय सूत्र ==
== गणितीय सूत्र ==
रोलिंग मोशन के लिए बिना फिसले होने के लिए, निम्नलिखित शर्त पूरी होनी चाहिए:
रोलिंग मोशन के लिए बिना फिसले होने के लिए, निम्नलिखित परिस्थिति पूरी होनी चाहिए:


<math>v=\omega * R </math>
<math>v=\omega * R </math>

Latest revision as of 09:56, 11 March 2024

Rolling motion

लोटनिक गति (रोलिंग मोशन) एक प्रकार का, संयुक्त रूप से, स्थानांतरीय (ट्रांसलेशनल) और घूर्णनात्मक (रोटेशनल) गति (मोशन) है। यह तब होता है, जब कोई वस्तु बिना फिसले किसी सतह पर लुढ़कती है। यह साधारणतः नित्य उपयोग में आने वाली वस्तुओं जैसे पहियों, गेंदों और सिलेंडरों में देखा जाता है। लोटनिक (रोलिंग) गति में, वस्तु के द्रव्यमान का केंद्र और सतह पर उसके (द्रव्यमान के) बिंदुओं, दोनों में गति होती है ।

समझने के लिए

किसी लुढ़कती वस्तु की गति को शुद्ध स्थानान्तरण और शुद्ध घूर्णन के संयोजन के रूप में देखा जा सकता है।

लोटनिक गति को समझने के लिए, एक चपटी सतह पर पहिए के लुढ़कने के एक सरल उदाहरण की अवधारणा की जा सकती है। यहाँ मुख्य विचार यह है कि जैसे ही पहिया लुढ़कता है, यह अनुवादात्मक गति (द्रव्यमान के केंद्र की गति) और घूर्णी गति (अपनी धुरी के चारों ओर घूमना) दोनों से गुजरता है।

दो महत्वपूर्ण बल

जब पहिए पर कोई बल लगाया जाता है, जैसे कि उसे आगे धकेलना, तो उस पर दो महत्वपूर्ण बल कार्य करते हैं:

   स्थानान्तरण बल (Translational Force)

इस बल के कारण पहिये का द्रव्यमान केन्द्र एक सीधी रेखा में गति करता है। यह पहिए की स्थानांतरीय गति के लिए उत्तरदायी होता है। इस बल का परिमाण और दिशा लगाए गए, बल और पहिया पर कार्य करने वाले किसी भी अन्य बाहरी बल, जैसे घर्षण पर निर्भर करती है।

   घूर्णी बल

यह बल पहिए की घूर्णी गति के लिए उत्तरदायी होता है। जैसे ही पहिया लुढ़कता है, पहिया के केंद्र से उनकी अलग-अलग दूरी के कारण इसकी सतह पर बिंदुओं की गति अलग-अलग होती है। गति में यह अंतर एक बलाघूर्ण बनाता है, जिसके कारण पहिया घूमता है। घूर्णी बल टॉर्क और पहिया के जड़त्वाघूर्ण पर निर्भर करता है।

गणितीय सूत्र

रोलिंग मोशन के लिए बिना फिसले होने के लिए, निम्नलिखित परिस्थिति पूरी होनी चाहिए:

जहाँ:

   पहिए के द्रव्यमान के केंद्र का रेखीय वेग है,

   पहिया का कोणीय वेग (घूर्णन की दर) है, और

   पहिये की त्रिज्या है।

यह समीकरण दर्शाता है कि द्रव्यमान के केंद्र का रैखिक वेग सीधे कोणीय वेग और पहिया की त्रिज्या से संबंधित है। यदि वस्तु बिना खिसके लुढ़क रही है, तो रैखिक वेग और कोणीय वेग समानुपाती होते हैं।

संक्षेप में

लोटनिक गति ,स्थानांतरीय और घूर्णनात्मक (गति) का एक संयोजन है। जब कोई वस्तु बिना खिसके लुढ़कती है, तो उसके द्रव्यमान के केंद्र का रैखिक वेग सीधे उसके कोणीय वेग और त्रिज्या से संबंधित होता है। यह अवधारणा भौतिकी में विभिन्न परिघटनाओं को समझने के लिए महत्वपूर्ण है, जैसे पहियों, गेंदों और अन्य लुढ़कती हुई वस्तुओं की गति।