परिभ्रमण त्रिज्या: Difference between revisions
Listen
Line 12: | Line 12: | ||
<math>I=m_{1}r_{1}^{2}+m_{2}r_{2}^{2}+ \cdots m_{n} r_{n}^{2},</math> | <math>I=m_{1}r_{1}^{2}+m_{2}r_{2}^{2}+ \cdots m_{n} r_{n}^{2},</math> | ||
बनता है | बनता है । | ||
यदि सभी द्रव्यमान <math>(m)</math> समान हैं | यदि सभी द्रव्यमान <math>(m)</math> समान हैं ,तो <math>m=M/n,</math>जहां <math>m </math> एकल कण का द्रव्यमान है और <math>n </math> उन कणों की संख्या है, | ||
ऐसे में | |||
<math> I=m(r_{1}^{2 }+r_{2}^{2}+ \cdots r_{n}^{2}),</math> | |||
और चूंकि <math>{\displaystyle I=M(r_{1}^{2}+r_{2}^{2} \cdots r_{n}^{2}) /n},</math> | |||
उपरोक्त समीकरणों से, हमारे पास है | उपरोक्त समीकरणों से, हमारे पास है |
Revision as of 05:47, 12 March 2024
Radius of gyration
परिभ्रमण की त्रिज्या एक अवधारणा है जिसका उपयोग भौतिकी और इंजीनियरिंग में घूर्णन की धुरी के चारों ओर द्रव्यमान या वस्तुओं के वितरण का वर्णन करने के लिए किया जाता है। यह इस बात का माप है कि द्रव्यमान, घूर्णन अक्ष के सापेक्ष किस प्रकार फैला या संकेंद्रित,है।
किसी कठोर पिंड या असतत द्रव्यमान, वाली किसी वस्तु के लिए, परिभ्रमण की त्रिज्या को वस्तु का जड़त्वाघूर्ण और उसके कुल द्रव्यमान के अनुपात के वर्गमूल के रूप में परिभाषित किया जाता है।
सूत्रीकरण
गणितीय रूप से परिभ्रमण की त्रिज्या, प्रासंगिक अनुप्रयोग के आधार पर, वस्तु के द्रव्यमान के केंद्र या किसी दिए गए अक्ष से उसके भागों की मूल माध्य वर्ग दूरी है। यह वास्तव में बिंदु द्रव्यमान से घूर्णन अक्ष तक की लंबवत दूरी है। एक गतिमान बिंदु के प्रक्षेप पथ को एक पिंड के रूप में दर्शाया जा सकता है। फिर परिभ्रमण की त्रिज्या का उपयोग इस बिंदु द्वारा तय की गई विशिष्ट दूरी को दर्शाने के लिए किया जा सकता है।
यदि यह मान लीया जाए कि एक पिंड, जिसमें अनेक कण हैं,जहां प्रत्येक कण का द्रव्यमान है और ये कण पिंड रूप में कुछ इस तरह से व्यवस्थित हैं की घूर्णन अक्ष से लंबवत प्रत्येक कण की दूरी होती है। ऐसी स्तिथि में घूर्णन की धुरी से संदर्भित में पिंड का जड़त्व आघूर्ण ()
बनता है ।
यदि सभी द्रव्यमान समान हैं ,तो जहां एकल कण का द्रव्यमान है और उन कणों की संख्या है,
ऐसे में
और चूंकि
उपरोक्त समीकरणों से, हमारे पास है
एम आर जी 2 = एम ( आर 1 2 आर 2 2 ⋯ आर एन 2 ) / एन {डिस्प्लेस्टाइल MR_{g}^{2}=M(r_{1}^{2} r_{2}^{2} \cdots r_{n}^{2})/n}
परिभ्रमण की त्रिज्या अक्ष सूत्र से कणों की मूल माध्य वर्ग दूरी है
आर जी 2 = ( आर 1 2 आर 2 2 ⋯ आर एन 2 ) / एन {डिस्प्लेस्टाइल आर_ {जी} ^ {2} = (आर_ {1} ^ {2} आर_ {2} ^ {2} \ cdots r_ { n}^{2})/n}
इसलिए, किसी दिए गए अक्ष के चारों ओर किसी पिंड के घूमने की त्रिज्या को घूर्णन अक्ष से पिंड के विभिन्न कणों की मूल माध्य वर्ग दूरी के रूप में भी परिभाषित किया जा सकता है। इसे उस तरीके के माप के रूप में भी जाना जाता है जिसमें एक घूमते हुए कठोर पिंड का द्रव्यमान उसके घूर्णन अक्ष के चारों ओर वितरित होता है।
गणितीय रूप
गणितीय रूप से, इसे इस प्रकार व्यक्त किया जा सकता है:
जहाँ:
परिभ्रमण की त्रिज्या है
वस्तु का जड़त्व आघूर्ण है
वस्तु का कुल द्रव्यमान है
जड़त्व आघूर्ण वस्तु में द्रव्यमान के आकार और वितरण पर निर्भर करता है। ठोस गोले, सिलेंडर या आयताकार प्लेट जैसी सरल ज्यामितीय आकृतियों के लिए, जड़त्व आघूर्ण की गणना करने के लिए विशिष्ट सूत्र हैं। अधिक जटिल वस्तुओं के लिए, वस्तु पर द्रव्यमान वितरण को एकीकृत करके जड़त्व आघूर्ण निर्धारित किया जा सकता है।
संक्षेप में
परिभ्रमण की त्रिज्या, यह संकेत देती है कि द्रव्यमान को घूर्णन अक्ष के संबंध में कैसे वितरित किया जाता है। परिभ्रमण की एक छोटी त्रिज्या इंगित करती है कि द्रव्यमान धुरी के करीब केंद्रित है, जबकि परिभ्रमण की एक बड़ी त्रिज्या अधिक फैले हुए द्रव्यमान वितरण को इंगित करती है।