माध्य - प्रत्यक्ष विधि: Difference between revisions
No edit summary |
(added content) |
||
(10 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
वर्गीकृत आंकड़ों के माध्य की गणना करने के लिए हमारे पास तीन अलग-अलग विधियाँ हैं - प्रत्यक्ष विधि, कल्पित माध्य विधि, और पग-विचलन विधि। वर्गीकृत आंकड़ों का माध्य विभिन्न अवलोकनों या चरों की आवृत्तियों से संबंधित है जिन्हें एक साथ वर्गीकृत किया गया है। | |||
[[Category: | |||
[[Category: | === प्रत्यक्ष विधि === | ||
प्रत्यक्ष विधि, वर्गीकृत आंकड़ों का माध्य ज्ञात करने की सबसे सरल विधि है। यदि प्रेक्षणों के मान <math>x_1,x_2,x_3.............x_n</math> हैं और उनकी संगत आवृत्तियाँ <math>f_1,f_2,f_3.............f_n</math> हैं तो आंकड़ों का माध्य इस प्रकार दिया जाता है, | |||
<math>\bar{x} =\frac{x_1f_1+x_2f_2+x_3f_3+......+x_nf_n}{f_1+f_2+f_3+......+f_n}</math> | |||
<math>\bar{x} =\frac{\sum_{i=1}^n \displaystyle x_if_i}{\sum_{i=1}^n \displaystyle f_i}</math> | |||
प्रत्यक्ष विधि का उपयोग करके वर्गीकृत आंकड़ों का माध्य ज्ञात करने की प्रक्रियाएँ यहां दिए गए हैं, | |||
* एक तालिका बनाएं जिसमें चार स्तंभ हों जैसे वर्ग अंतराल, वर्ग चिह्न <math>x_i</math> (संगत) , आवृत्तियों <math>f_i</math> (संगत), और <math>x_if_i</math> द्वारा निरूपित। | |||
* सूत्र माध्य <math>\bar{x} =\frac{\sum_{i=1}^n \displaystyle x_if_i}{\sum_{i=1}^n \displaystyle f_i}</math> द्वारा माध्य की गणना करें। जहाँ <math>f_i</math> आवृत्ति है और <math>x_i</math> वर्ग अंतराल का मध्यबिंदु है। | |||
* <math>x_i</math> सूत्र का उपयोग करके मध्य बिंदु की गणना करें। <math>x_i</math> = (ऊपरी वर्ग सीमा - निचली वर्ग सीमा ) / 2. | |||
'''उदाहरण''': निम्नलिखित आंकड़ों का माध्य ज्ञात कीजिए। | |||
{| class="wikitable" | |||
|+ | |||
!वर्ग अंतराल | |||
!आवृत्ति <math>f_i</math> | |||
|- | |||
|0 - 10 | |||
|9 | |||
|- | |||
|10 - 20 | |||
|13 | |||
|- | |||
|20 - 30 | |||
|8 | |||
|- | |||
|30 - 40 | |||
|15 | |||
|- | |||
|40 - 50 | |||
|10 | |||
|} | |||
हल: | |||
{| class="wikitable" | |||
!वर्ग अंतराल | |||
!आवृत्ति | |||
<math>f_i</math> | |||
!वर्ग चिन्ह | |||
<math>x_i</math> | |||
!<math>x_i</math><math>f_i</math> | |||
|- | |||
|0 - 10 | |||
|9 | |||
|5 | |||
|45 | |||
|- | |||
|10 - 20 | |||
|13 | |||
|15 | |||
|195 | |||
|- | |||
|20 - 30 | |||
|8 | |||
|25 | |||
|200 | |||
|- | |||
|30 - 40 | |||
|15 | |||
|35 | |||
|525 | |||
|- | |||
|40 - 50 | |||
|10 | |||
|45 | |||
|450 | |||
|- | |||
|'''कुल''' | |||
|'''55''' | |||
| | |||
|'''1415''' | |||
|} | |||
वर्ग अंतराल 0 - 10 में ऊपरी वर्ग सीमा= 10 ; निचली वर्ग सीमा = 0 . | |||
अत: <math>x_i</math> = (ऊपरी वर्ग सीमा + निचली वर्ग सीमा) / 2 = <math>\frac{10+0}{2}=5</math> , इसी प्रकार, अन्य वर्ग अंतरालों के लिए, <math>x_i</math> की गणना की जाती है। | |||
माध्य = <math>\bar{x} =\frac{\sum_{i=1}^n \displaystyle x_if_i}{\sum_{i=1}^n \displaystyle f_i}=\frac{1415}{55}=25.73</math> | |||
[[Category:सांख्यिकी]][[Category:गणित]][[Category:कक्षा-10]] |
Latest revision as of 12:49, 13 March 2024
वर्गीकृत आंकड़ों के माध्य की गणना करने के लिए हमारे पास तीन अलग-अलग विधियाँ हैं - प्रत्यक्ष विधि, कल्पित माध्य विधि, और पग-विचलन विधि। वर्गीकृत आंकड़ों का माध्य विभिन्न अवलोकनों या चरों की आवृत्तियों से संबंधित है जिन्हें एक साथ वर्गीकृत किया गया है।
प्रत्यक्ष विधि
प्रत्यक्ष विधि, वर्गीकृत आंकड़ों का माध्य ज्ञात करने की सबसे सरल विधि है। यदि प्रेक्षणों के मान हैं और उनकी संगत आवृत्तियाँ हैं तो आंकड़ों का माध्य इस प्रकार दिया जाता है,
प्रत्यक्ष विधि का उपयोग करके वर्गीकृत आंकड़ों का माध्य ज्ञात करने की प्रक्रियाएँ यहां दिए गए हैं,
- एक तालिका बनाएं जिसमें चार स्तंभ हों जैसे वर्ग अंतराल, वर्ग चिह्न (संगत) , आवृत्तियों (संगत), और द्वारा निरूपित।
- सूत्र माध्य द्वारा माध्य की गणना करें। जहाँ आवृत्ति है और वर्ग अंतराल का मध्यबिंदु है।
- सूत्र का उपयोग करके मध्य बिंदु की गणना करें। = (ऊपरी वर्ग सीमा - निचली वर्ग सीमा ) / 2.
उदाहरण: निम्नलिखित आंकड़ों का माध्य ज्ञात कीजिए।
वर्ग अंतराल | आवृत्ति |
---|---|
0 - 10 | 9 |
10 - 20 | 13 |
20 - 30 | 8 |
30 - 40 | 15 |
40 - 50 | 10 |
हल:
वर्ग अंतराल | आवृत्ति
|
वर्ग चिन्ह
|
|
---|---|---|---|
0 - 10 | 9 | 5 | 45 |
10 - 20 | 13 | 15 | 195 |
20 - 30 | 8 | 25 | 200 |
30 - 40 | 15 | 35 | 525 |
40 - 50 | 10 | 45 | 450 |
कुल | 55 | 1415 |
वर्ग अंतराल 0 - 10 में ऊपरी वर्ग सीमा= 10 ; निचली वर्ग सीमा = 0 .
अत: = (ऊपरी वर्ग सीमा + निचली वर्ग सीमा) / 2 = , इसी प्रकार, अन्य वर्ग अंतरालों के लिए, की गणना की जाती है।
माध्य =