रिक्त समुच्चय: Difference between revisions
(content modified) |
(added content) |
||
Line 1: | Line 1: | ||
रिक्त समुच्चय अद्वितीय समुच्चय है जिसमें कोई अवयव नहीं होता है जैसे कि इसकी कार्डिनैलिटी 0 है। | रिक्त समुच्चय अद्वितीय समुच्चय है जिसमें कोई अवयव नहीं होता है जैसे कि इसकी गणनीयता(कार्डिनैलिटी) 0 है। | ||
== परिभाषा == | == परिभाषा == | ||
Line 16: | Line 16: | ||
वास्तविक जीवन में, जब तक ऐसी स्थिति न हो कि एक वैन निर्माण कंपनी एक विशेष प्रतिमान(मॉडल) बनाती है, ऐसी वैन ढूंढना असंभव है जिसमें 10 दरवाजे हों। इसलिए, 10 दरवाजों वाली वैन वाला समुच्चय एक रिक्त समुच्चय है। | वास्तविक जीवन में, जब तक ऐसी स्थिति न हो कि एक वैन निर्माण कंपनी एक विशेष प्रतिमान(मॉडल) बनाती है, ऐसी वैन ढूंढना असंभव है जिसमें 10 दरवाजे हों। इसलिए, 10 दरवाजों वाली वैन वाला समुच्चय एक रिक्त समुच्चय है। | ||
== रिक्त समुच्चय के गणनांक == | |||
गणनांक को समुच्चय के आकार या समुच्चय में उपस्थित अवयवों की कुल संख्या के रूप में परिभाषित किया जा सकता है। चूँकि रिक्त समुच्चय में कोई अवयव नहीं है, हम कह सकते हैं कि उनका गणनांक शून्य है। | |||
== रिक्त समुच्चय का प्रतिनिधित्व कैसे करें? == | |||
रिक्त समुच्चय को <math>\{\}</math> के रूप में दर्शाया जाता है, जिसमें कोई भी अवयव नहीं होता है। इसे प्रतीक <math>\varnothing</math> ('फ़ाई या phi' के रूप में पढ़ें) का उपयोग करके भी दर्शाया जाता है। | |||
(i) मान लीजिए <math>A=\{x:1<x<2 ,x</math> एक प्राकृत संख्या है<math>\}</math> तो <math>A</math> रिक्त समुच्चय है क्योंकि <math>1</math> और <math>2</math> के बीच कोई प्राकृत संख्या नहीं है। | |||
(ii) <math>D=\{x:x^2=4,x</math> विषम है<math>\}</math>। तब <math>D</math> एक रिक्त समुच्चय है, क्योंकि समीकरण <math>x^2=4</math>, <math>x</math> के किसी भी विषम मान से संतुष्ट नहीं है। | |||
[[Category:समुच्चय]][[Category:कक्षा-11]][[Category:गणित]] | [[Category:समुच्चय]][[Category:कक्षा-11]][[Category:गणित]] |
Revision as of 09:52, 25 March 2024
रिक्त समुच्चय अद्वितीय समुच्चय है जिसमें कोई अवयव नहीं होता है जैसे कि इसकी गणनीयता(कार्डिनैलिटी) 0 है।
परिभाषा
जिस समुच्चय में कोई अवयव नहीं होता उसे रिक्त समुच्चय या शून्य समुच्चय कहा जाता है।
समुच्चय सिद्धांत में, 6 और 7 के बीच की पूर्ण संख्या को वर्गीकृत करने के लिए एक खाली समुच्चय का उपयोग किया जा सकता है। चूँकि इस उदाहरण का कोई निश्चित उत्तर नहीं है, इसलिए इसे एक रिक्त समुच्चय या शून्य समुच्चय का उपयोग करके दर्शाया जा सकता है।
आइए निम्नलिखित उदाहरणों पर विचार करें जहां हमें यह निर्धारित करने की आवश्यकता है कि दिए गए समुच्चय, रिक्त समुच्चय हैं या नहीं।
a.) एक अभाज्य संख्या है और
हम अभाज्य संख्याओं के समुच्चय को मानेंगे। इस प्रकार ।चूँकि और के बीच में कोई अभाज्य संख्या नहीं है, हम यह निष्कर्ष निकाल सकते हैं कि एक रिक्त समुच्चय है।
b.) 10 दरवाजों वाली वैनों की संख्या।
वास्तविक जीवन में, जब तक ऐसी स्थिति न हो कि एक वैन निर्माण कंपनी एक विशेष प्रतिमान(मॉडल) बनाती है, ऐसी वैन ढूंढना असंभव है जिसमें 10 दरवाजे हों। इसलिए, 10 दरवाजों वाली वैन वाला समुच्चय एक रिक्त समुच्चय है।
रिक्त समुच्चय के गणनांक
गणनांक को समुच्चय के आकार या समुच्चय में उपस्थित अवयवों की कुल संख्या के रूप में परिभाषित किया जा सकता है। चूँकि रिक्त समुच्चय में कोई अवयव नहीं है, हम कह सकते हैं कि उनका गणनांक शून्य है।
रिक्त समुच्चय का प्रतिनिधित्व कैसे करें?
रिक्त समुच्चय को के रूप में दर्शाया जाता है, जिसमें कोई भी अवयव नहीं होता है। इसे प्रतीक ('फ़ाई या phi' के रूप में पढ़ें) का उपयोग करके भी दर्शाया जाता है।
(i) मान लीजिए एक प्राकृत संख्या है तो रिक्त समुच्चय है क्योंकि और के बीच कोई प्राकृत संख्या नहीं है।
(ii) विषम है। तब एक रिक्त समुच्चय है, क्योंकि समीकरण , के किसी भी विषम मान से संतुष्ट नहीं है।