परिमित और अपरिमित समुच्चय: Difference between revisions
(added content) |
(content modified) |
||
(One intermediate revision by the same user not shown) | |||
Line 11: | Line 11: | ||
=== अपरिमित समुच्चयों के उदाहरण === | === अपरिमित समुच्चयों के उदाहरण === | ||
हम रोस्टर या सारणीबद्ध रूप में एक समुच्चय का प्रतिनिधित्व करते हैं, | हम रोस्टर या सारणीबद्ध रूप में एक समुच्चय का प्रतिनिधित्व करते हैं, समुच्चय के सभी अवयवों को धनुःकोष्ठक <math>\{\}</math> के भीतर लिखते हैं। अपरिमित समुच्चय के सभी अवयवों को धनुःकोष्ठक <math>\{\}</math> के भीतर लिखना संभव नहीं है क्योंकि ऐसे समुच्चय के अवयवों की संख्या सीमित नहीं है। इसलिए, हम कुछ अवयवों को लिखकर रोस्टर या सारणीबद्ध रूप में कुछ अपरिमित समुच्चय का प्रतिनिधित्व करते हैं जो स्पष्ट रूप से समुच्चय की संरचना को तीन बिंदुओं के बाद (या पहले) दर्शाते हैं। | ||
<math>\{1,2,3,...\}</math> प्राकृत संख्याओं का समुच्चय है | <math>\{1,2,3,...\}</math> प्राकृत संख्याओं का समुच्चय है | ||
Line 37: | Line 37: | ||
समुच्चय का गणनांक <math>n(A)=x</math> है, जहां <math>x </math> समुच्चय <math>A</math> के अवयवों की संख्या है। किसी अपरिमित समुच्चय का गणनांक <math>n(A)=\infty</math> है, क्योंकि इसमें अवयवों की संख्या असीमित या अपरिमित है। | समुच्चय का गणनांक <math>n(A)=x</math> है, जहां <math>x </math> समुच्चय <math>A</math> के अवयवों की संख्या है। किसी अपरिमित समुच्चय का गणनांक <math>n(A)=\infty</math> है, क्योंकि इसमें अवयवों की संख्या असीमित या अपरिमित है। | ||
== परिमित समुच्चय के | == परिमित समुच्चय के गुणधर्म == | ||
* किसी परिमित समुच्चय का उचित उपसमुच्चय परिमित होता है। | * किसी परिमित समुच्चय का उचित उपसमुच्चय परिमित होता है। | ||
Line 46: | Line 46: | ||
* परिमित समुच्चय का घात समुच्चय परिमित होता है। | * परिमित समुच्चय का घात समुच्चय परिमित होता है। | ||
== अपरिमित समुच्चय के | == अपरिमित समुच्चय के गुणधर्म == | ||
* किसी भी संख्या में अपरिमित समुच्चयों का सम्मिलन(यूनियन), एक अपरिमित समुच्चय होता है। | * किसी भी संख्या में अपरिमित समुच्चयों का सम्मिलन(यूनियन), एक अपरिमित समुच्चय होता है। |
Latest revision as of 07:51, 27 March 2024
परिमित समुच्चय और अपरिमित समुच्चय एक दूसरे से पूर्णतः भिन्न हैं। जैसा कि नाम से पता चलता है, परिमित समुच्चय गणनीय है और इसमें अवयवों की एक सीमित या परिमित संख्या होती है। वह समुच्चय जो परिमित नहीं है, अपरिमित समुच्चय कहलाता है। अपरिमित समुच्चय में उपस्थित अवयवों की संख्या सीमित नहीं होती है और अपरिमित फैली हुई होती है।
परिभाषा
वह समुच्चय जो रिक्त होता है या जिसमें अवयवों की एक निश्चित संख्या होती है, परिमित कहलाता है अन्यथा वह समुच्चय अपरिमित कहलाता है।
परिमित समुच्चयों के उदाहरण
- से कम सम प्राकृतिक संख्याओं का एक समुच्चय, । समुच्चय में अवयव हैं जो एक सीमित संख्या है और अवयवों को गिना जा सकता है।
- समीकरण का हल
- सप्ताह के दिन
अपरिमित समुच्चयों के उदाहरण
हम रोस्टर या सारणीबद्ध रूप में एक समुच्चय का प्रतिनिधित्व करते हैं, समुच्चय के सभी अवयवों को धनुःकोष्ठक के भीतर लिखते हैं। अपरिमित समुच्चय के सभी अवयवों को धनुःकोष्ठक के भीतर लिखना संभव नहीं है क्योंकि ऐसे समुच्चय के अवयवों की संख्या सीमित नहीं है। इसलिए, हम कुछ अवयवों को लिखकर रोस्टर या सारणीबद्ध रूप में कुछ अपरिमित समुच्चय का प्रतिनिधित्व करते हैं जो स्पष्ट रूप से समुच्चय की संरचना को तीन बिंदुओं के बाद (या पहले) दर्शाते हैं।
प्राकृत संख्याओं का समुच्चय है
विषम प्राकृत संख्याओं का समुच्चय है
सम प्राकृत संख्याओं का समुच्चय है
पूर्णांकों का समुच्चय है
ये सभी समुच्चय अपरिमित हैं
परिमित समुच्चय के गणनांक
यदि , समुच्चय के अवयवों की संख्या को दर्शाता है, तो एक परिमित समुच्चय के गणनांक है। परिमित समुच्चय का गणनांक एक प्राकृतिक संख्या या संभवतः है।
तो, सभी अंग्रेजी वर्णमाला के समुच्चय का गणनांक है क्योंकि अवयवों (वर्णमाला) की संख्या है।
अतः, ।
इसी प्रकार, एक वर्ष में महीनों वाले समुच्चय में का गणनांक होगा।
इसलिए, हम किसी भी परिमित समुच्चय के सभी अवयवों को सूचीबद्ध कर सकते हैं और उन्हें धनुःकोष्ठक या रोस्टर या सारणीबद्ध रूप में सूचीबद्ध कर सकते हैं।
अपरिमित समुच्चय के गणनांक
समुच्चय का गणनांक है, जहां समुच्चय के अवयवों की संख्या है। किसी अपरिमित समुच्चय का गणनांक है, क्योंकि इसमें अवयवों की संख्या असीमित या अपरिमित है।
परिमित समुच्चय के गुणधर्म
- किसी परिमित समुच्चय का उचित उपसमुच्चय परिमित होता है।
- किसी भी संख्या में परिमित समुच्चयों का सम्मिलन(यूनियन) परिमित होता है।
- दो परिमित समुच्चयों का सर्वनिष्ट(इनर्सेक्शन) परिमित होता है।
- परिमित समुच्चयों का कार्टेशियन गुणनफल परिमित होता है।
- एक परिमित समुच्चय का गणनांक, एक परिमित संख्या होती है और समुच्चय में अवयवों की संख्या के समान होती है।
- परिमित समुच्चय का घात समुच्चय परिमित होता है।
अपरिमित समुच्चय के गुणधर्म
- किसी भी संख्या में अपरिमित समुच्चयों का सम्मिलन(यूनियन), एक अपरिमित समुच्चय होता है।
- अपरिमित समुच्चय का घात समुच्चय अपरिमित होता है।
- अपरिमित समुच्चय का अधिसमुच्चय(सुपरसेट) भी अपरिमित होता है।
- किसी अपरिमित समुच्चय का उपसमुच्चय अपरिमित हो भी सकता है और नहीं भी।
- अपरिमित समुच्चय गणनीय या अगणनीय हो सकते हैं। उदाहरण के लिए, वास्तविक संख्याओं का समुच्चय अगणनीय है जबकि पूर्णांकों का समुच्चय गणनीय है।