लंबन विधि: Difference between revisions

From Vidyalayawiki

Listen

No edit summary
 
(2 intermediate revisions by one other user not shown)
Line 4: Line 4:


== एक उदाहरण ==
== एक उदाहरण ==
उंगली को हाथ की लंबाई पर पकड़ने  और एक नेत्र बंद कर,नेत्रों बदलें और ध्यान देने पर उंगली पृष्ठभूमि के सापेक्ष किस तरह बदलती (शिफ्ट) दिखती है। पृष्ठभूमि के विपरीत उंगली की आभासी पहेलू को लंबन कहा जाता है। यह प्रभाव इसलिए होता है क्योंकि प्रत्येक नेत्र , उंगली को थोड़ा अलग कोण से देखती है।
उंगली को हाथ की लंबाई पर,एक नेत्र बंद कर देखने और फिर नेत्रों को बदलें और ध्यान देने पर उंगली पृष्ठभूमि के सापेक्ष किस तरह बदलती (शिफ्ट) दिखती है,लंबन विधि का साक्षारण सा उदाहरण है । पृष्ठभूमि के विपरीत उंगली की आभासी पहेलू को लंबन कहा जाता है। यह प्रभाव इसलिए होता है क्योंकि प्रत्येक नेत्र , उंगली को थोड़ा अलग कोण से देखती है।


== खगोल शास्त्र में लंबन विधि ==
== खगोल शास्त्र में लंबन विधि ==
[[File:Parallax geo or helio static.PNG|thumb|लंबन एक बिंदु पर एक रेखा द्वारा बनाया गया कोण है। ऊपरी आरेख में, पृथ्वी अपनी कक्षा में सूर्य पर बने लंबन कोण को घुमाती है। निचला आरेख एक भूस्थैतिक मॉडल में सूर्य द्वारा बनाए गए समान कोण को दर्शाता है। एक समान आरेख किसी तारे के लिए खींचा जा सकता है, सिवाय इसके कि लंबन का कोण छोटा होगा।]]
[[File:Parallax geo or helio static.PNG|thumb|लंबन एक बिंदु पर एक रेखा द्वारा बनाया गया कोण है। ऊपरी आरेख में, पृथ्वी अपनी कक्षा में सूर्य पर बने लंबन कोण को घुमाती है। निचला आरेख एक भूस्थैतिक मॉडल में सूर्य द्वारा बनाए गए समान कोण को दर्शाता है। एक समान आरेख किसी तारे के लिए खींचा जा सकता है, सिवाय इसके कि लंबन का कोण छोटा होगा।]]
इसी तरह, खगोलविद तारों की दूरी मापने के लिए लंबन विधि का उपयोग करते हैं। वे पृथ्वी की कक्षा में एक बिंदु से आकाश में एक तारे की स्थिति का निरीक्षण करते हैं और फिर छह महीने बाद कक्षा के विपरीत दिशा से अवलोकन को दोहराते हैं। अधिक दूर की वस्तुओं की पृष्ठभूमि के विरुद्ध तारे की दो स्थितियों की तुलना करके, खगोलविद लंबन के कोण को माप सकते हैं।
इस विधि का उपयोग कर, खगोलविद तारों की दूरी मापने के लिए लंबन विधि का उपयोग करते हैं। वे पृथ्वी की कक्षा में एक बिंदु से आकाश में एक तारे की स्थिति का निरीक्षण करते हैं और फिर छह महीने बाद कक्षा के विपरीत दिशा से अवलोकन को दोहराते हैं। अधिक दूर की वस्तुओं की पृष्ठभूमि के विरुद्ध तारे की दो स्थितियों की तुलना करके, खगोलविद लंबन के कोण को माप सकते हैं।


== सिद्धांत व उसका उपयोग ==
== सिद्धांत व उसका उपयोग ==
त्रिकोणासन नामक एक सिद्धांत का उपयोग करते हुए, खगोलविद मापा लंबन कोण के आधार पर तारे की दूरी निर्धारित कर सकते हैं। विचार यह है कि लंबन कोण जितना बड़ा होगा, तारा पृथ्वी के उतना ही करीब होगा। लंबन विधि खगोलविदों को पास के तारों की दूरी का सटीक अनुमान लगाने की अनुमति देती है।
त्रिकोणासन नामक एक सिद्धांत का उपयोग करते हुए, खगोलविद मापा लंबन कोण के आधार पर तारे की दूरी निर्धारित कर सकते हैं। विचार यह है कि लंबन कोण जितना बड़ा होगा, तारा पृथ्वी के उतना ही समीप होगा। लंबन विधि खगोलविदों को पास के तारों की दूरी का सटीक अनुमान लगाने की अनुमति देती है।


== संक्षेप में ==
== संक्षेप में ==
लंबन विधि एक ऐसी तकनीक है जिसका उपयोग खगोलविद पृथ्वी की कक्षा में विभिन्न बिंदुओं से देखी गई अपनी स्थिति के स्पष्ट बदलाव को देखकर आस-पास के सितारों की दूरी को मापने के लिए करते हैं। इस पद्धति का उपयोग करके वैज्ञानिक हमारे ब्रह्मांड की विशाल दूरी और संरचना के बारे में बहुमूल्य जानकारी प्राप्त करते हैं।
लंबन विधि एक ऐसी तकनीक है जिसका उपयोग खगोलविद पृथ्वी की कक्षा में विभिन्न बिंदुओं से देखी गई अपनी स्थिति के स्पष्ट बदलाव को देखकर आस-पास के सितारों की दूरी को मापने के लिए करते हैं। इस पद्धति का उपयोग करके वैज्ञानिक हमारे ब्रह्मांड की विशाल दूरी और संरचना के बारे में बहुमूल्य जानकारी प्राप्त करते हैं।
[[Category:मात्रक एवं मापन]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]]
[[Category:मात्रक एवं मापन]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]]

Latest revision as of 16:12, 21 May 2024

Parallax method

लंबन विधि, एक वैज्ञानिक तकनीक है, जिसका उपयोग अंतरिक्ष में वस्तुओं के बीच की दूरी को मापने के लिए किया जाता है, विशेषकर पास के सितारों (नक्षत्र) के लिए। यह लंबन नामक अवधारणा पर निर्भर करता है, जिसे एक साधारण प्रयोग से समझा जा सकता है।

एक उदाहरण

उंगली को हाथ की लंबाई पर,एक नेत्र बंद कर देखने और फिर नेत्रों को बदलें और ध्यान देने पर उंगली पृष्ठभूमि के सापेक्ष किस तरह बदलती (शिफ्ट) दिखती है,लंबन विधि का साक्षारण सा उदाहरण है । पृष्ठभूमि के विपरीत उंगली की आभासी पहेलू को लंबन कहा जाता है। यह प्रभाव इसलिए होता है क्योंकि प्रत्येक नेत्र , उंगली को थोड़ा अलग कोण से देखती है।

खगोल शास्त्र में लंबन विधि

लंबन एक बिंदु पर एक रेखा द्वारा बनाया गया कोण है। ऊपरी आरेख में, पृथ्वी अपनी कक्षा में सूर्य पर बने लंबन कोण को घुमाती है। निचला आरेख एक भूस्थैतिक मॉडल में सूर्य द्वारा बनाए गए समान कोण को दर्शाता है। एक समान आरेख किसी तारे के लिए खींचा जा सकता है, सिवाय इसके कि लंबन का कोण छोटा होगा।

इस विधि का उपयोग कर, खगोलविद तारों की दूरी मापने के लिए लंबन विधि का उपयोग करते हैं। वे पृथ्वी की कक्षा में एक बिंदु से आकाश में एक तारे की स्थिति का निरीक्षण करते हैं और फिर छह महीने बाद कक्षा के विपरीत दिशा से अवलोकन को दोहराते हैं। अधिक दूर की वस्तुओं की पृष्ठभूमि के विरुद्ध तारे की दो स्थितियों की तुलना करके, खगोलविद लंबन के कोण को माप सकते हैं।

सिद्धांत व उसका उपयोग

त्रिकोणासन नामक एक सिद्धांत का उपयोग करते हुए, खगोलविद मापा लंबन कोण के आधार पर तारे की दूरी निर्धारित कर सकते हैं। विचार यह है कि लंबन कोण जितना बड़ा होगा, तारा पृथ्वी के उतना ही समीप होगा। लंबन विधि खगोलविदों को पास के तारों की दूरी का सटीक अनुमान लगाने की अनुमति देती है।

संक्षेप में

लंबन विधि एक ऐसी तकनीक है जिसका उपयोग खगोलविद पृथ्वी की कक्षा में विभिन्न बिंदुओं से देखी गई अपनी स्थिति के स्पष्ट बदलाव को देखकर आस-पास के सितारों की दूरी को मापने के लिए करते हैं। इस पद्धति का उपयोग करके वैज्ञानिक हमारे ब्रह्मांड की विशाल दूरी और संरचना के बारे में बहुमूल्य जानकारी प्राप्त करते हैं।