स्केल गुणक: Difference between revisions
Ramamurthy (talk | contribs) (formatting changes done) |
Ramamurthy (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
[[Category:त्रिभुज]] | [[Category:त्रिभुज]] | ||
[[Category:गणित]][[Category:गणित | [[Category:गणित]][[Category:गणित]][[Category:कक्षा-10]] | ||
[[Category:रचनाएँ]] | [[Category:रचनाएँ]] | ||
स्केल गुणक का उपयोग विभिन्न आयामों में आकृतियों को स्केल करने के लिए किया जाता है । ज्यामिति में, हम विभिन्न ज्यामितीय आकृतियों के बारे में सीखते हैं जो दो-आयाम और तीन-आयाम दोनों में होती हैं। स्केल फ़ैक्टर समान आकृतियों के लिए एक माप है , जो समान दिखते हैं लेकिन उनके पैमाने या माप अलग-अलग होते हैं। मान लीजिए, दो वृत्त समान दिखते हैं लेकिन उनकी त्रिज्याएँ अलग-अलग हो सकती हैं। | स्केल गुणक का उपयोग विभिन्न आयामों में आकृतियों को स्केल करने के लिए किया जाता है । ज्यामिति में, हम विभिन्न ज्यामितीय आकृतियों के बारे में सीखते हैं जो दो-आयाम और तीन-आयाम दोनों में होती हैं। स्केल फ़ैक्टर समान आकृतियों के लिए एक माप है , जो समान दिखते हैं लेकिन उनके पैमाने या माप अलग-अलग होते हैं। मान लीजिए, दो वृत्त समान दिखते हैं लेकिन उनकी त्रिज्याएँ अलग-अलग हो सकती हैं। |
Revision as of 17:57, 22 May 2024
स्केल गुणक का उपयोग विभिन्न आयामों में आकृतियों को स्केल करने के लिए किया जाता है । ज्यामिति में, हम विभिन्न ज्यामितीय आकृतियों के बारे में सीखते हैं जो दो-आयाम और तीन-आयाम दोनों में होती हैं। स्केल फ़ैक्टर समान आकृतियों के लिए एक माप है , जो समान दिखते हैं लेकिन उनके पैमाने या माप अलग-अलग होते हैं। मान लीजिए, दो वृत्त समान दिखते हैं लेकिन उनकी त्रिज्याएँ अलग-अलग हो सकती हैं।
स्केल गुणक क्या है?
जिस आकार से आकृति को बड़ा या छोटा किया जाता है उसे उसका स्केल कारक कहा जाता है। इसका उपयोग तब किया जाता है जब हमें 2D आकृति , जैसे वृत्त, त्रिभुज, वर्ग, आयत, आदि का आकार बढ़ाने की आवश्यकता होती है।
यदि y = Kx एक समीकरण है, तो K, x के लिए स्केल फ़ैक्टर है। हम इस अभिव्यक्ति को आनुपातिकता के संदर्भ में भी प्रस्तुत कर सकते हैं:
y ∝ x
इसलिए, हम यहां K को आनुपातिकता के स्थिरांक के रूप में मान सकते हैं।
स्केल फ़ैक्टर को मूल आनुपातिकता प्रमेय द्वारा भी बेहतर ढंग से समझा जा सकता है ।
स्केल गुणक सूत्र
स्केल गुणक का सूत्र इस प्रकार दिया गया है:
मूल आकार का आयाम x स्केल फैक्टर = नए आकार का आयाम
स्केल फ़ैक्टर = नए आकार का आयाम/मूल आकार का आयाम
दो वर्गों का उदाहरण लें जिनकी लंबाई-भुजाओं की लंबाई क्रमशः 6 इकाई और 3 इकाई है। अब, स्केल फ़ैक्टर खोजने के लिए नीचे दिए गए चरणों का पालन करें।
चरण 1: x स्केल फ़ैक्टर =
चरण 2: स्केल फ़ैक्टर = (प्रत्येक पक्ष को 6 से विभाजित करें)।
चरण 3: स्केल फ़ैक्टर = ½ =1:2 (सरलीकृत)।
इसलिए, बड़े वर्ग से छोटे वर्ग तक का स्केल फैक्टर 1:2 है।
स्केल फ़ैक्टर का उपयोग विभिन्न आकृतियों के साथ भी किया जा सकता है।
त्रिभुज का स्केल गुणक
जो त्रिभुज समरूप होते हैं उनका आकार समान होता है और तीनों कोणों का माप भी समान होता है। एकमात्र चीज जो भिन्न होती है वह है उनके पक्ष। हालाँकि, एक त्रिभुज की भुजाओं का अनुपात दूसरे त्रिभुज की भुजाओं के अनुपात के बराबर होता है, जिसे यहाँ स्केल फ़ैक्टर कहा जाता है।
यदि हमें छोटे त्रिभुज के समान बड़ा त्रिभुज खोजना है, तो हमें छोटे त्रिभुज की भुजाओं की लंबाई को स्केल फैक्टर से गुणा करना होगा।
स्केल गुणक उदाहरण
उदाहरण के लिए, 6 सेमी और 3 सेमी माप वाला एक आयत है।
यदि हम मूल आयत के लिए स्केल फैक्टर को 2 से बढ़ा देते हैं तो आयत की दोनों भुजाएं दोगुनी हो जाएंगी। यानी स्केल फैक्टर को बढ़ाने से हमारा मतलब आयत के मौजूदा माप को दिए गए स्केल फैक्टर से गुणा करना है। यहां, हमने आयत के मूल माप को 2 से गुणा कर दिया है।
मूल रूप से, आयत की लंबाई 6 सेमी और चौड़ाई 3 सेमी थी।
इसके स्केल फैक्टर को 2 बढ़ाने के बाद, लंबाई 12 सेमी और चौड़ाई 6 सेमी है।
यदि हम मूल आयत के स्केल फ़ैक्टर को 3 से बढ़ा देते हैं तो दोनों भुजाएँ तिगुनी हो जाएँगी। यानी स्केल फ़ैक्टर को बढ़ाने से हमारा मतलब आयत के मौजूदा माप को दिए गए स्केल फ़ैक्टर से गुणा करना है। यहां, हमने आयत के मूल माप को 3 से गुणा कर दिया है।
मूल रूप से, आयत की लंबाई 6 सेमी और चौड़ाई 3 सेमी थी।
इसके स्केल फैक्टर को 3 बढ़ाने के बाद, लंबाई 18 सेमी और चौड़ाई 9 सेमी है।
स्केल फैक्टर के वास्तविक जीवन में अनुप्रयोग
- यदि आपके घर पर किसी पार्टी में अपेक्षा से अधिक लोगों का समूह है। आपको सभी को खिलाने के लिए खाद्य पदार्थों की सामग्री को प्रत्येक को समान संख्या से गुणा करके बढ़ाना होगा। उदाहरण के लिए, यदि आपकी अपेक्षा से 4 लोग अतिरिक्त हैं और एक व्यक्ति को 2 पिज़्ज़ा स्लाइस की आवश्यकता है, तो आपको उन सभी को खिलाने के लिए 8 और पिज़्ज़ा स्लाइस बनाने की आवश्यकता है।
- इसी प्रकार, स्केल फ़ैक्टर का उपयोग किसी विशेष प्रतिशत वृद्धि का पता लगाने या किसी राशि के प्रतिशत की गणना करने के लिए किया जाता है।
- यह हमें समय सारणी ज्ञान का उपयोग करके विभिन्न समूहों के अनुपात और अनुपात का पता लगाने की सुविधा भी देता है।
- आकार बदलने के लिए: इसमें कितना बड़ा करना है यह व्यक्त करने का अनुपात निकाला जा सकता है।
- स्केल ड्राइंग: यह दिए गए मूल आंकड़े की तुलना में ड्राइंग को मापने का अनुपात है।
- 2 समान ज्यामितीय आकृतियों की तुलना करने के लिए: जब हम स्केल फैक्टर द्वारा दो समान ज्यामितीय आकृतियों की तुलना करते हैं, तो यह संबंधित पक्षों की लंबाई का अनुपात देता है।