अपवाह वेग: Difference between revisions
Listen
Line 42: | Line 42: | ||
<math>u = {m \; \sigma \Delta V \over \rho e f \ell} ,</math> | <math>u = {m \; \sigma \Delta V \over \rho e f \ell} ,</math> | ||
जहाँ | |||
<math>m\cdot s ^{-1}</math> में, इलेक्ट्रॉनों का अपवाह वेग <math>u </math> है । | |||
किग्रा <math>kg </math> में <math>m </math> | किग्रा <math>kg </math> में, धातु का आणविक द्रव्यमान <math>m </math> है । | ||
<math> | <math> S/m</math> में, माने गए तापमान पर माध्यम की विद्युत चालकता <math>\rho </math> है। | ||
<math> | <math>V </math> में, कंडक्टर पर लगाया गया वोल्टेज <math>{{\Delta V}}</math> है । | ||
<math> | <math>kg \cdot m^{-3} </math> में ,कंडक्टर का घनत्व <math>\rho</math>(द्रव्यमान प्रति इकाई आयतन) है । | ||
कूलम्ब <math>C </math> में प्राथमिक आवेश <math>e </math> है । | कूलम्ब <math>C </math> में प्राथमिक आवेश <math>e </math> है । | ||
Line 58: | Line 58: | ||
<math>f </math> प्रति परमाणु मुक्त इलेक्ट्रॉनों की संख्या है । | <math>f </math> प्रति परमाणु मुक्त इलेक्ट्रॉनों की संख्या है । | ||
<math>l </math> कंडक्टर की लंबाई | <math>m </math> में ,<math>l </math> कंडक्टर की लंबाई <math>l </math> है। | ||
भौतिकी में, वेग से तात्पर्य किसी चालक (तार की तरह) में इलेक्ट्रॉनों जैसे आवेशित कणों के औसत वेग से है, जब उसमें से विद्युत धारा प्रवाहित होती है। ये आवेशित कण राजमार्ग पर चलने वाली कारों की तरह हैं। जब आप एक स्विच चालू करते हैं और एक सर्किट बनाते हैं, तो तारों के माध्यम से विद्युत धारा प्रवाहित होने लगती है। | भौतिकी में, वेग से तात्पर्य किसी चालक (तार की तरह) में इलेक्ट्रॉनों जैसे आवेशित कणों के औसत वेग से है, जब उसमें से विद्युत धारा प्रवाहित होती है। ये आवेशित कण राजमार्ग पर चलने वाली कारों की तरह हैं। जब आप एक स्विच चालू करते हैं और एक सर्किट बनाते हैं, तो तारों के माध्यम से विद्युत धारा प्रवाहित होने लगती है। |
Revision as of 13:34, 25 May 2024
Drift Velocity
भौतिकी में, अपवाह वेग, विद्युत क्षेत्र के कारण किसी सामग्री में इलेक्ट्रॉनों, जैसे आवेशित कणों द्वारा प्राप्त औसत वेग है। सामान्यतः, किसी चालक में एक इलेक्ट्रॉन यादृच्छिक रूप से प्रसारित होता है,जिसके परिणामस्वरूप ऐसे इलेक्ट्रॉनों का औसत वेग शून्य होता है।विद्युत क्षेत्र लगाने से इस यादृच्छिक गति में एक दिशा में एक छोटा शुद्ध प्रवाह जुड़ जाता है; इस बहाव को ही अपवाह के रूप में जाना जाता है।
अपवाह वेग धारा के समानुपाती होता है। किसी प्रतिरोधक सामग्री में, यह बाहरी विद्युत क्षेत्र के परिमाण के समानुपाती भी होता है। इस प्रकार ओम के नियम को अपवाह वेग के रूप में संदर्भित कीया जा सकता है।
गणितीय सूत्र के रूप में
इस नियम की मूल अभिव्यक्ति इस प्रकार की जा सकती है :
जहां अपवाह वेग है, सामग्री की इलेक्ट्रॉन गतिशीलता है, और विद्युत क्षेत्र है। एमकेएस (प्रणाली में, अपवाह वेग को , इलेक्ट्रॉन गतिशीलता, , और विद्युत क्षेत्र को, की इकाइयाँ होती हैं।
मुक्त व ऊषमीय इलेक्ट्रान
जब किसी विद्युतीय चालक के विद्युतीय विभव में अंतर उत्पन्न कीया जाता है, तो मुक्त इलेक्ट्रॉन लगातार टकरावों के बीच विद्युत क्षेत्र के विपरीत दिशा में वेग प्राप्त करते हैं (और क्षेत्र की दिशा में यात्रा करते समय वेग खो देते हैं), इस प्रकार अतिरिक्त रूप से उस दिशा में एक वेग घटक प्राप्त होता है, इसके यादृच्छिक तापीय वेग के लिए। परिणामस्वरूप, इलेक्ट्रॉनों का एक निश्चित लघु अपवाह वेग प्राप्त हो जाता है, जो मुक्त इलेक्ट्रॉनों की यादृच्छिक गति पर आरोपित होता है। इस अपवाह वेग के कारण, विद्युतीय क्षेत्र की दिशा के विपरीत, इलेक्ट्रॉनों का शुद्ध प्रवाह होता है। प्रायः इलेक्ट्रॉनों की अपवाह गति,लगभग मीटर प्रति सेकंड होती है, जबकि ऊष्मीय गति,लगभग मीटर प्रति सेकंड होती है।
प्रायोगिक विधि
स्थिर अनुप्रस्थ-अनुभागीय क्षेत्र की सामग्री में आवेश वाहकों के अपवाह वेग का मूल्यांकन करने का सूत्र इस प्रकार दिया गया है:
जहां इलेक्ट्रॉनों का अपवाह वेग है, सामग्री के माध्यम से बहने वाली विद्युतीय धारा का घनत्व है, चार्ज-वाहक संख्या घनत्व है, और चार्ज-वाहक पर चार्ज है।
इसे इस प्रकार भी लिखा जा सकता है:
लेकिन विद्युतीय धारा का घनत्व और अपवाह वेग, और , वास्तव में वेक्टर हैं, इसलिए प्रायः इस संबंध को इस प्रकार से लिखा जाता है:
जहाँ
विद्युतीय आवेश का (चार्ज) घनत्व (जिसकी SI इकाई: कूलम्ब प्रति घन मीटर) है।
दाएं-बेलनाकार विद्युतीय प्रवाह-वाहक धात्विक ओमिक कंडक्टर के मूल गुणों के संदर्भ में, जहां आवेश (चार्ज)-वाहक इलेक्ट्रॉन होते हैं, इस अभिव्यक्ति को इस प्रकार फिर से लिखा जा सकता है:
जहाँ
में, इलेक्ट्रॉनों का अपवाह वेग है ।
किग्रा में, धातु का आणविक द्रव्यमान है ।
में, माने गए तापमान पर माध्यम की विद्युत चालकता है।
में, कंडक्टर पर लगाया गया वोल्टेज है ।
में ,कंडक्टर का घनत्व (द्रव्यमान प्रति इकाई आयतन) है ।
कूलम्ब में प्राथमिक आवेश है ।
प्रति परमाणु मुक्त इलेक्ट्रॉनों की संख्या है ।
में , कंडक्टर की लंबाई है।
भौतिकी में, वेग से तात्पर्य किसी चालक (तार की तरह) में इलेक्ट्रॉनों जैसे आवेशित कणों के औसत वेग से है, जब उसमें से विद्युत धारा प्रवाहित होती है। ये आवेशित कण राजमार्ग पर चलने वाली कारों की तरह हैं। जब आप एक स्विच चालू करते हैं और एक सर्किट बनाते हैं, तो तारों के माध्यम से विद्युत धारा प्रवाहित होने लगती है।
अब, तार के अंदर, अनगिनत छोटे आवेशित कण हैं, जिनमें अधिकतर इलेक्ट्रॉन हैं, जो सामग्री बनाने वाले परमाणुओं का हिस्सा हैं। ये इलेक्ट्रॉन हमेशा अनियमित रूप से घूमते रहते हैं, व्यस्त सड़क पर कारों की तरह उछलते रहते हैं। हालाँकि, जब तार पर एक विद्युत क्षेत्र (बैटरी से वोल्टेज द्वारा निर्मित) लागू किया जाता है, तो इलेक्ट्रॉनों को एक शुद्ध बल का अनुभव होता है जो उन्हें एक विशिष्ट दिशा में धकेलता है।
राजमार्ग पर कारों की तरह, कुछ इलेक्ट्रॉन तेज़ चलते हैं, और कुछ धीमी गति से चलते हैं, लेकिन एक सामान्य औसत दिशा होती है जिसमें वे चलते हैं। यह औसत गति जिस पर वे विद्युत क्षेत्र की प्रतिक्रिया में चलते हैं, अपवाह वेग कहलाती है।
यह समझना महत्वपूर्ण है कि जब इलेक्ट्रॉन विद्युत क्षेत्र की दिशा में (बैटरी के नकारात्मक टर्मिनल से सकारात्मक टर्मिनल तक) चलते हैं, तो उनका वास्तविक अपवाह वेग काफी धीमा होता है। यह उल्टा लग सकता है क्योंकि जब हम स्विच फ्लिप करते हैं तो हम देखते हैं कि प्रकाश तुरंत चालू हो जाता है, लेकिन ऐसा इसलिए है क्योंकि विद्युत क्षेत्र तार के माध्यम से लगभग प्रकाश की गति से यात्रा करता है।
इसे परिप्रेक्ष्य में रखने के लिए, एक राजमार्ग पर कारों की लंबी कतार के बारे में सोचें। जब पहली कार चलना शुरू करती है, तो पंक्ति के अंत में मौजूद कारों को भी चलने में देर नहीं लगती, भले ही प्रत्येक कार धीरे-धीरे चल रही हो। इसी तरह, विद्युत संकेत तार के माध्यम से तेजी से यात्रा करता है, जिससे सर्किट से जुड़े उपकरण तुरंत प्रतिक्रिया करते हैं, भले ही वास्तविक इलेक्ट्रॉन अपेक्षाकृत धीमी गति से चलते हैं।
तो, संक्षेप में, अपवाह वेग वह औसत गति है जिस पर आवेशित कण (जैसे इलेक्ट्रॉन) किसी चालक में तब गति करते हैं जब उसमें से विद्युत धारा प्रवाहित होती है। यह हमें यह समझने में मदद करता है कि इलेक्ट्रॉन कैसे होता है