शुद्धगतिकी: Difference between revisions

From Vidyalayawiki

Listen

No edit summary
 
(13 intermediate revisions by 2 users not shown)
Line 1: Line 1:
kinematics
kinematics


शुद्धगतिकी, भौतिकी की एक शाखा है, जो गति का कारण बनने वाली शक्तियों पर विचार किए बिना, वस्तुओं की गति से संबंधित है। यह गणितीय समीकरणों के एक सेट का उपयोग करके वस्तुओं की गति का वर्णन करने पर केंद्रित है।  
शुद्धगतिकी, भौतिकी की एक शाखा है, जो गति का कारण बनने वाली शक्तियों पर विचार किए बिना, वस्तुओं की [[गति]] से संबंधित है। यह गणितीय समीकरणों के एक सेट का उपयोग करके वस्तुओं की गति का वर्णन करने पर केंद्रित है।  


== तीन मुख्य अवधारणाओं का अध्ययन  ==
== तीन मुख्य अवधारणाओं का अध्ययन  ==
शुद्धगतिकी में, तीन मुख्य अवधारणाओं का अध्ययन करते हैं: स्थिति, वेग और त्वरण।
शुद्धगतिकी में, तीन मुख्य अवधारणाओं का अध्ययन निहित है : स्थिति, वेग और त्वरण।
[[File:The Kinematics of Machinery - Figure 3.jpg|thumb|पूरी तरह से कठोर सामग्री से बना एक पहिया, जो दो माउंटों के बीच टिका हुआ है।पहिये का प्रत्येक कण एक समतल वृत्ताकार प्रक्षेपवक्र में चलायमान है ।]]


'''स्थिति'''
===== स्थिति =====
किसी वस्तु की स्थिति किसी भी समय अंतरिक्ष में उसके स्थान को संदर्भित करती है। इसे निर्देशांक या संदर्भ बिंदु से दूरी का उपयोग करके वर्णित किया जा सकता है। उदाहरण के लिए, यदि एक सीधी सड़क पर कार की स्थिति को मापा जा रहा है, तो उसकी स्थिति का वर्णन करने के लिए एक निश्चित बिंदु से दूरी या आरंभिक बिंदु से दूरी का उपयोग कीया जा सकता है।


किसी वस्तु की स्थिति किसी भी समय अंतरिक्ष में उसके स्थान को संदर्भित करती है। इसे निर्देशांक या संदर्भ बिंदु से दूरी का उपयोग करके वर्णित किया जा सकता है। उदाहरण के लिए, यदि आप एक सीधी सड़क पर कार की स्थिति को माप रहे हैं, तो आप उसकी स्थिति का वर्णन करने के लिए एक निश्चित बिंदु से दूरी या शुरुआती बिंदु से दूरी का उपयोग कर सकते हैं।
===== वेग =====
वेग उस दर का वर्णन करता है,जिस पर किसी वस्तु की स्थिति समय के साथ बदलती है। यह समय में परिवर्तन की स्थिति (विस्थापन) में परिवर्तन का अनुपात है। पारिभाषिक रूप से वेग में परिमाण और दिशा दोनों निहित होते हैं। सर्वप्रथम, एक आधार मान कर यह मान्यता बनाई जाती है की यदि कोई वस्तु सीधी रेखा में चल रही है, तो उसका वेग धनात्मक माना जाय, यदि वह वस्तु उस निर्धारित दिशा के विपरीत दिशा में चलती है, तो उसके वेग को ऋणात्मक माना जाए।


   '''वेग'''
===== त्वरण =====
त्वरण वह दर है जिस पर किसी वस्तु का वेग समय के साथ बदलता है। यह समय में परिवर्तन के वेग में परिवर्तन का अनुपात है। त्वरण में परिमाण और दिशा भी होती है। यदि कोई वस्तु गति करती है, धीमी होती है या दिशा बदलती है तो वह गति कर सकती है।


वेग उस दर का वर्णन करता है जिस पर किसी वस्तु की स्थिति समय के साथ बदलती है। यह समय में परिवर्तन की स्थिति (विस्थापन) में परिवर्तन का अनुपात है। वेग में परिमाण और दिशा दोनों होते हैं। यदि कोई वस्तु सीधी रेखा में चल रही है, तो उसका वेग धनात्मक होता है यदि वह एक दिशा में चलती है और यदि वह विपरीत दिशा में चलती है तो ऋणात्मक होती है।
स्थिति, वेग और त्वरण के बीच संबंध का वर्णन करने के लिए, गतिज समीकरण नामक समीकरणों के एक सेट का उपयोग करते हैं। ये समीकरण प्रारंभिक और अंतिम स्थिति, वेग, त्वरण और लगने वाले समय से संबंधित हैं। एक आयामी गति (सीधी रेखा के साथ गति) के लिए सबसे अधिक उपयोग किए जाने वाले शुद्धगतिकी समीकरण नीचे दीये गए हैं।


   '''त्वरण'''
<math>v = u + at</math>


त्वरण वह दर है जिस पर किसी वस्तु का वेग समय के साथ बदलता है। यह समय में परिवर्तन के वेग में परिवर्तन का अनुपात है। त्वरण में परिमाण और दिशा भी होती है। यदि कोई वस्तु गति करती है, धीमी होती है या दिशा बदलती है तो वह गति कर सकती है।
यह समीकरण अंतिम वेग (<math>v</math>), प्रारंभिक वेग (<math>u</math>), त्वरण (<math>a</math>), और समय (<math>t</math>) से संबंधित है। यह बताता है कि किसी वस्तु का वेग समय के साथ कैसे बदलता है।


स्थिति, वेग और त्वरण के बीच संबंध का वर्णन करने के लिए,  गतिज समीकरण नामक समीकरणों के एक सेट का उपयोग करते हैं। ये समीकरण प्रारंभिक और अंतिम स्थिति, वेग, त्वरण और लगने वाले समय से संबंधित हैं। एक आयामी गति (सीधी रेखा के साथ गति) के लिए सबसे अधिक उपयोग किए जाने वाले किनेमेटिक समीकरण हैं
<math>s = ut+(1/2)at^2</math>


<math>v = u + at</math> यह समीकरण अंतिम वेग (<math>v</math>), प्रारंभिक वेग (<math>u</math>), त्वरण (<math>a</math>), और समय (<math>t</math>) से संबंधित है। यह हमें बताता है कि किसी वस्तु का वेग समय के साथ कैसे बदलता है।
यह समीकरण विस्थापन (<math>s</math>) प्रारंभिक वेग (<math>u</math>), त्वरण (<math>a</math>), और समय (<math>t</math>) से संबंधित है। ये समीकरण, वस्तु <math>d</math> द्वारा तय की गई दूरी की गणना करने में मदद करता हैै।


<math>s = ut+(1/2)at^2</math>यह समीकरण विस्थापन (<math>s</math>) प्रारंभिक वेग (<math>u</math>), त्वरण (<math>a</math>), और समय (<math>t</math>) से संबंधित है। यह हमें वस्तु <math>d</math> द्वारा तय की गई दूरी की गणना करने में मदद करता हैै।
<math>v^2 = u^2+2as</math>


<math>v^2 = u^2+2as</math>यह समीकरण अंतिम वेग (<math>v</math>), प्रारंभिक वेग (<math>u</math>), त्वरण (<math>a</math>), और विस्थापन (<math>s</math>) से संबंधित है। यह हमें किसी वस्तु का अंतिम वेग ज्ञात करने की अनुमति देता है यदि हमें उसका प्रारंभिक वेग, त्वरण और विस्थापन ज्ञात हो।
यह समीकरण अंतिम वेग (<math>v</math>), प्रारंभिक वेग (<math>u</math>), त्वरण (<math>a</math>), और विस्थापन (<math>s</math>) से संबंधित है। ये समीकरण बतलाता है की यदि किससी वस्तु का प्रारंभिक वेग, त्वरण और विस्थापन ज्ञात है, तो उस वस्तु का अंतिम वेग  कैसे ज्ञात होगा।


ये समीकरण गति के मौलिक सिद्धांतों से लिए गए हैं और इनका उपयोग वस्तुओं की गति से संबंधित विभिन्न समस्याओं को हल करने के लिए किया जा सकता है।
ये समीकरण गति के मौलिक सिद्धांतों से लिए गए हैं और इनका उपयोग वस्तुओं की गति से संबंधित विभिन्न समस्याओं को हल करने के लिए किया जा सकता है।


== संक्षेप में ==
== संक्षेप में ==
शुद्धगतिकी शामिल बलों पर विचार किए बिना गति का वर्णन करने पर केंद्रित है। जब हम डायनामिक्स का अध्ययन करते हैं तो बल काम में आते हैं, जो इस बात से संबंधित है कि कैसे बल वस्तुओं की गति को प्रभावित करते हैं।
शुद्धगतिकी निहित बलों पर विचार किए बिना गति का वर्णन करने पर केंद्रित है। जब गतिकी (डायनामिक्स) का अध्ययन करते हैं, तो बल काम में आते हैं, जो इस बात से संबंधित है कि कैसे बल वस्तुओं की गति को प्रभावित करते हैं।
[[Category:सरल रेखा में गति]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]]
[[Category:सरल रेखा में गति]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]]

Latest revision as of 15:18, 28 May 2024

kinematics

शुद्धगतिकी, भौतिकी की एक शाखा है, जो गति का कारण बनने वाली शक्तियों पर विचार किए बिना, वस्तुओं की गति से संबंधित है। यह गणितीय समीकरणों के एक सेट का उपयोग करके वस्तुओं की गति का वर्णन करने पर केंद्रित है।

तीन मुख्य अवधारणाओं का अध्ययन

शुद्धगतिकी में, तीन मुख्य अवधारणाओं का अध्ययन निहित है : स्थिति, वेग और त्वरण।

पूरी तरह से कठोर सामग्री से बना एक पहिया, जो दो माउंटों के बीच टिका हुआ है।पहिये का प्रत्येक कण एक समतल वृत्ताकार प्रक्षेपवक्र में चलायमान है ।
स्थिति

किसी वस्तु की स्थिति किसी भी समय अंतरिक्ष में उसके स्थान को संदर्भित करती है। इसे निर्देशांक या संदर्भ बिंदु से दूरी का उपयोग करके वर्णित किया जा सकता है। उदाहरण के लिए, यदि एक सीधी सड़क पर कार की स्थिति को मापा जा रहा है, तो उसकी स्थिति का वर्णन करने के लिए एक निश्चित बिंदु से दूरी या आरंभिक बिंदु से दूरी का उपयोग कीया जा सकता है।

वेग

वेग उस दर का वर्णन करता है,जिस पर किसी वस्तु की स्थिति समय के साथ बदलती है। यह समय में परिवर्तन की स्थिति (विस्थापन) में परिवर्तन का अनुपात है। पारिभाषिक रूप से वेग में परिमाण और दिशा दोनों निहित होते हैं। सर्वप्रथम, एक आधार मान कर यह मान्यता बनाई जाती है की यदि कोई वस्तु सीधी रेखा में चल रही है, तो उसका वेग धनात्मक माना जाय, यदि वह वस्तु उस निर्धारित दिशा के विपरीत दिशा में चलती है, तो उसके वेग को ऋणात्मक माना जाए।

त्वरण

त्वरण वह दर है जिस पर किसी वस्तु का वेग समय के साथ बदलता है। यह समय में परिवर्तन के वेग में परिवर्तन का अनुपात है। त्वरण में परिमाण और दिशा भी होती है। यदि कोई वस्तु गति करती है, धीमी होती है या दिशा बदलती है तो वह गति कर सकती है।

स्थिति, वेग और त्वरण के बीच संबंध का वर्णन करने के लिए, गतिज समीकरण नामक समीकरणों के एक सेट का उपयोग करते हैं। ये समीकरण प्रारंभिक और अंतिम स्थिति, वेग, त्वरण और लगने वाले समय से संबंधित हैं। एक आयामी गति (सीधी रेखा के साथ गति) के लिए सबसे अधिक उपयोग किए जाने वाले शुद्धगतिकी समीकरण नीचे दीये गए हैं।

यह समीकरण अंतिम वेग (), प्रारंभिक वेग (), त्वरण (), और समय () से संबंधित है। यह बताता है कि किसी वस्तु का वेग समय के साथ कैसे बदलता है।

यह समीकरण विस्थापन () प्रारंभिक वेग (), त्वरण (), और समय () से संबंधित है। ये समीकरण, वस्तु द्वारा तय की गई दूरी की गणना करने में मदद करता हैै।

यह समीकरण अंतिम वेग (), प्रारंभिक वेग (), त्वरण (), और विस्थापन () से संबंधित है। ये समीकरण बतलाता है की यदि किससी वस्तु का प्रारंभिक वेग, त्वरण और विस्थापन ज्ञात है, तो उस वस्तु का अंतिम वेग कैसे ज्ञात होगा।

ये समीकरण गति के मौलिक सिद्धांतों से लिए गए हैं और इनका उपयोग वस्तुओं की गति से संबंधित विभिन्न समस्याओं को हल करने के लिए किया जा सकता है।

संक्षेप में

शुद्धगतिकी निहित बलों पर विचार किए बिना गति का वर्णन करने पर केंद्रित है। जब गतिकी (डायनामिक्स) का अध्ययन करते हैं, तो बल काम में आते हैं, जो इस बात से संबंधित है कि कैसे बल वस्तुओं की गति को प्रभावित करते हैं।