विश्रांति काल: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
relaxation time | relaxation time | ||
विश्रांति काल ठोस-राज्य भौतिकी में एक अवधारणा है जो हमें बाहरी वाहक क्षेत्र लागू होने पर सामग्री में चार्ज वाहक ( इलेक्ट्रॉनों या छेद ) के व्यवहार को समझने में मदद करता है। आइए एक नए भौतिकी प्रमुख को विश्रांति काल की व्याख्या करें और आवश्यक समीकरणों को पेश करें। | |||
विश्रांति काल: | |||
विश्रांति काल ( TA ) एक विद्युत क्षेत्र जैसे बाहरी बल से परेशान होने के बाद एक संतुलन राज्य में एक सामग्री वापसी में वाहक को कितनी जल्दी चार्ज करता है, इसका एक उपाय है। यह सामग्री में बिखरने वाले केंद्रों ( दोषों, अशुद्धियों, फोन्स, आदि ) के साथ चार्ज वाहक के क्रमिक टकराव के बीच औसत समय अंतराल का प्रतिनिधित्व करता है। | |||
विश्रांति काल के लिए गणितीय समीकरण: | |||
विश्रांति काल के बीच संबंध ( TA ) और चार्ज वाहक की गतिशीलता ( μ ) निम्नलिखित समीकरण द्वारा वर्णित किया जा सकता है: | |||
μ = q * 1 / m | μ = q * 1 / m | ||
Line 15: | Line 15: | ||
इस समीकरण में: | इस समीकरण में: | ||
μ: चार्ज वाहक की गतिशीलता ( मीटर की इकाइयों में वोल्ट-सेकंड, m ² / V · s ) | μ: चार्ज वाहक की गतिशीलता ( मीटर की इकाइयों में वोल्ट-सेकंड, m ² / V · s )। | ||
q: वाहकों का प्रभार ( coulombs में, C ) | q: वाहकों का प्रभार ( coulombs में, C )। | ||
τ: वाहक का | τ: वाहक का विश्रांति काल ( सेकंड में, )। | ||
m: वाहक का प्रभावी द्रव्यमान ( किलोग्राम में, किलो ) | m: वाहक का प्रभावी द्रव्यमान ( किलोग्राम में, किलो )। | ||
समीकरण की व्याख्या: | समीकरण की व्याख्या: | ||
समीकरण से पता चलता है कि गतिशीलता ( μ ) छूट समय के लिए आनुपातिक है ( 1 ) चार्ज वाहक और उनके प्रभावी द्रव्यमान के विपरीत आनुपातिक ( m ) | समीकरण से पता चलता है कि गतिशीलता ( μ ) छूट समय के लिए आनुपातिक है ( 1 ) चार्ज वाहक और उनके प्रभावी द्रव्यमान के विपरीत आनुपातिक ( m )। गतिशीलता बताती है कि विद्युत क्षेत्र के जवाब में वाहक कितनी आसानी से और जल्दी चार्ज करते हैं। एक लंबा विश्रांति काल वाहक को टक्कर का अनुभव करने से पहले आगे बढ़ने की अनुमति देता है, जिससे उच्च गतिशीलता होती है। | ||
उदाहरण: | उदाहरण: | ||
आइए | आइए विश्रांति काल और गतिशीलता को चित्रित करने के लिए एक उदाहरण पर विचार करें। मान लीजिए कि हमारे पास 1 पिकोसेकंड ( 1 ps = 10 ^ -12 सेकंड ) और 9।11 x 10 ^ -31 किलोग्राम ( के प्रभावी द्रव्यमान के साथ एक सामग्री में इलेक्ट्रॉन हैं इलेक्ट्रॉन )। एक इलेक्ट्रॉन का आवेश लगभग -1।6 x 10 ^ -19 कूलोम्ब है। | ||
μ = q * 1 / m | μ = q * 1 / m | ||
μ = ( - | μ = ( -1।6 x 10 ^ -19 C ) * ( 1 x 10 ^ -12 s ) / TAG1> 9।11 x 10 ^ -31 kg ( | ||
μ ≈ - | μ ≈ -1।757 x 10 ^ -4 m ² / V · s | ||
तो, इस सामग्री में इलेक्ट्रॉनों की गतिशीलता लगभग - | तो, इस सामग्री में इलेक्ट्रॉनों की गतिशीलता लगभग -1।757 x 10 ^ -4 मीटर ² / V · s है। | ||
विश्राम | == विश्रांति काल का महत्व == | ||
विश्रांति काल ठोस-राज्य भौतिकी में एक महत्वपूर्ण पैरामीटर है क्योंकि यह सामग्री की विद्युत चालकता और इलेक्ट्रॉनिक गुणों को प्रभावित करता है। यह हमें यह समझने में मदद करता है कि चार्ज वाहक बाहरी विद्युत क्षेत्रों पर कैसे प्रतिक्रिया करते हैं और वे विभिन्न सामग्रियों में विद्युत प्रवाह के प्रवाह में कैसे योगदान करते हैं। लंबे समय तक विश्राम के साथ सामग्री अक्सर उच्च चालकता और बेहतर इलेक्ट्रॉनिक परिवहन गुणों का प्रदर्शन करती है। | |||
== संक्षेप में == | |||
अर्धचालक और धातुओं में चार्ज वाहक के व्यवहार का विश्लेषण करने के लिए विश्रांति काल को समझना महत्वपूर्ण है, जो इलेक्ट्रॉनिक उपकरणों और सर्किट में आवश्यक घटक हैं। | |||
[[Category:विद्युत् धारा]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] | [[Category:विद्युत् धारा]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] |
Revision as of 10:18, 3 June 2024
relaxation time
विश्रांति काल ठोस-राज्य भौतिकी में एक अवधारणा है जो हमें बाहरी वाहक क्षेत्र लागू होने पर सामग्री में चार्ज वाहक ( इलेक्ट्रॉनों या छेद ) के व्यवहार को समझने में मदद करता है। आइए एक नए भौतिकी प्रमुख को विश्रांति काल की व्याख्या करें और आवश्यक समीकरणों को पेश करें।
विश्रांति काल:
विश्रांति काल ( TA ) एक विद्युत क्षेत्र जैसे बाहरी बल से परेशान होने के बाद एक संतुलन राज्य में एक सामग्री वापसी में वाहक को कितनी जल्दी चार्ज करता है, इसका एक उपाय है। यह सामग्री में बिखरने वाले केंद्रों ( दोषों, अशुद्धियों, फोन्स, आदि ) के साथ चार्ज वाहक के क्रमिक टकराव के बीच औसत समय अंतराल का प्रतिनिधित्व करता है।
विश्रांति काल के लिए गणितीय समीकरण:
विश्रांति काल के बीच संबंध ( TA ) और चार्ज वाहक की गतिशीलता ( μ ) निम्नलिखित समीकरण द्वारा वर्णित किया जा सकता है:
μ = q * 1 / m
इस समीकरण में:
μ: चार्ज वाहक की गतिशीलता ( मीटर की इकाइयों में वोल्ट-सेकंड, m ² / V · s )।
q: वाहकों का प्रभार ( coulombs में, C )।
τ: वाहक का विश्रांति काल ( सेकंड में, )।
m: वाहक का प्रभावी द्रव्यमान ( किलोग्राम में, किलो )।
समीकरण की व्याख्या:
समीकरण से पता चलता है कि गतिशीलता ( μ ) छूट समय के लिए आनुपातिक है ( 1 ) चार्ज वाहक और उनके प्रभावी द्रव्यमान के विपरीत आनुपातिक ( m )। गतिशीलता बताती है कि विद्युत क्षेत्र के जवाब में वाहक कितनी आसानी से और जल्दी चार्ज करते हैं। एक लंबा विश्रांति काल वाहक को टक्कर का अनुभव करने से पहले आगे बढ़ने की अनुमति देता है, जिससे उच्च गतिशीलता होती है।
उदाहरण:
आइए विश्रांति काल और गतिशीलता को चित्रित करने के लिए एक उदाहरण पर विचार करें। मान लीजिए कि हमारे पास 1 पिकोसेकंड ( 1 ps = 10 ^ -12 सेकंड ) और 9।11 x 10 ^ -31 किलोग्राम ( के प्रभावी द्रव्यमान के साथ एक सामग्री में इलेक्ट्रॉन हैं इलेक्ट्रॉन )। एक इलेक्ट्रॉन का आवेश लगभग -1।6 x 10 ^ -19 कूलोम्ब है।
μ = q * 1 / m
μ = ( -1।6 x 10 ^ -19 C ) * ( 1 x 10 ^ -12 s ) / TAG1> 9।11 x 10 ^ -31 kg (
μ ≈ -1।757 x 10 ^ -4 m ² / V · s
तो, इस सामग्री में इलेक्ट्रॉनों की गतिशीलता लगभग -1।757 x 10 ^ -4 मीटर ² / V · s है।
विश्रांति काल का महत्व
विश्रांति काल ठोस-राज्य भौतिकी में एक महत्वपूर्ण पैरामीटर है क्योंकि यह सामग्री की विद्युत चालकता और इलेक्ट्रॉनिक गुणों को प्रभावित करता है। यह हमें यह समझने में मदद करता है कि चार्ज वाहक बाहरी विद्युत क्षेत्रों पर कैसे प्रतिक्रिया करते हैं और वे विभिन्न सामग्रियों में विद्युत प्रवाह के प्रवाह में कैसे योगदान करते हैं। लंबे समय तक विश्राम के साथ सामग्री अक्सर उच्च चालकता और बेहतर इलेक्ट्रॉनिक परिवहन गुणों का प्रदर्शन करती है।
संक्षेप में
अर्धचालक और धातुओं में चार्ज वाहक के व्यवहार का विश्लेषण करने के लिए विश्रांति काल को समझना महत्वपूर्ण है, जो इलेक्ट्रॉनिक उपकरणों और सर्किट में आवश्यक घटक हैं।