समनांतर चतुर्भुज के योग सम्बन्धी नियम: Difference between revisions

From Vidyalayawiki

No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
Parallelogram law of addition of vectors
Parallelogram law of addition of vectors


सदिशों के योग का समांतर चतुर्भुज नियम एक विधि है जिसका उपयोग परिणामी सदिश को खोजने के लिए किया जाता है जब दो सदिश एक साथ जोड़े जाते हैं। इस नियम के अनुसार, यदि दो सदिश समांतर चतुर्भुज की दो आसन्न भुजाओं द्वारा दर्शाए जाते हैं, तो समांतर चतुर्भुज का विकर्ण, दो सदिशों के उभयनिष्ठ बिंदु से प्रारंभ होकर, परिणामी सदिश का प्रतिनिधित्व करता है।
सदिशों के योग का समांतर चतुर्भुज नियम, एक विधि है, जिसका उपयोग परिणामी सदिश को खोजने के लिए किया जाता है। जब दो सदिश एक साथ जोड़े जाते हैं। इस नियम के अनुसार, यदि दो सदिश समांतर चतुर्भुज की दो आसन्न भुजाओं द्वारा दर्शाए जाते हैं, तो समांतर चतुर्भुज का विकर्ण, दो सदिशों के उभयनिष्ठ बिंदु से प्रारंभ होकर, परिणामी सदिश का प्रतिनिधित्व करता है।


गणितीय रूप से, मान लें कि हमारे पास दो सदिश A और B हैं। उनके परिणामी सदिश R को खोजने के लिए, हम जोड़ के समांतर चतुर्भुज नियम का उपयोग कर सकते हैं:
== गणित में ==
समांतर चतुर्भुज नियम का सबसे सरल रूप (जिसे समांतर चतुर्भुज पहचान भी कहा जाता है) प्राथमिक ज्यामिति से संबंधित है। इसमें कहा गया है कि एक समांतर चतुर्भुज की चारों भुजाओं की लंबाई के वर्गों का योग दो विकर्णों की लंबाई के वर्गों के योग के बराबर होता है। पक्षों के लिए, इन अंकन (नोटेशन) का उपयोग करते हैं: <math>AB</math>, <math>BC</math>, <math>CD</math>, <math>DA</math>। लेकिन चूंकि यूक्लिडियन ज्यामिति में एक समांतर चतुर्भुज की सम्मुख भुजाएं आवश्यक रूप से बराबर होती हैं, यानी <math>AB=CD</math> और <math>BC=DA</math>, नियम को इस प्रकार कहा जा सकता है


#    सदिश A खींचिए, जिसका पुच्छ मूल बिंदु पर हो।
<math>{ 2AB^{2}+2BC^{2}=AC^{2}+BD^{2}\,},</math>
#    सदिश a  के शीर्ष  से, सदिश b  को सदिश a  के शीर्ष पर ,उसकी (सदिश b)  के साथ खींचें।
#    दूसरा विकर्ण खींचकर समांतर चतुर्भुज को पूरा करें (A की पूंछ से B के सिर तक)।
#    परिणामी सदिश R को इस विकर्ण द्वारा निरूपित किया जाता है।


सदिश A और B के बारे में दी गई जानकारी के आधार पर त्रिकोणमिति या सदिश अपघटन जैसी विधियों का उपयोग करके सदिश R की लंबाई और दिशा निर्धारित की जा सकती है।
यदि समांतर चतुर्भुज एक आयत है, तो दोनों विकर्ण समान लंबाई <math>AC = BD</math> के हैं


जोड़ का समांतर चतुर्भुज नियम इस सिद्धांत पर आधारित है कि सदिशों को अंतरिक्ष में विस्थापन के रूप में मानकर उन्हें एक साथ जोड़ा जा सकता है। यह कानून द्वि-आयामी और त्रि-आयामी दोनों वैक्टरों पर लागू होता है।
<math>{2AB^{2}+2BC^{2}=2AC^{2}}</math>
 
और कथन पाइथागोरस प्रमेय को कम कर देता है। सामान्य चतुर्भुज के लिए जिसकी चार भुजाएँ आवश्यक रूप से समान नहीं हैं,
 
<math>{ AB^{2}+BC^{2}+CD^{2}+DA^{2}=AC^{2}+BD^{2}+4x^{2},}</math>
 
जहां <math>x </math> विकर्णों के मध्य बिंदुओं को जोड़ने वाले रेखा खंड की लंबाई है। आरेख से यह देखा जा सकता है कि समांतर चतुर्भुज के लिए <math>{x = 0},</math>  और इसलिए सामान्य सूत्र समांतर चतुर्भुज नियम को सरल बनाता है।
 
== गणितीय रूप से ==
[[File:Parallelogram law.svg|thumb]]
यदि दो सदिश <math>x </math>और  दीये गए हैं, तो उनके परिणामी सदिश <math>R</math> को खोजने के लिए,  समांतर चतुर्भुज नियम का उपयोग कीया जा सकता है। यह करने के लीये ,नीचे दीये गए बिंदू की विधि अपनानी होगी :
 
#    सदिश <math>x</math> खींचिए, जिसका पुच्छ मूल बिंदु पर हो।
#    सदिश <math>x</math> के शीर्ष से, सदिश <math> y </math> को ऐसे खीचऐं की सदिश <math>x </math> के शीर्ष पर, सदिश <math>y </math> की पुच्छ हो ।
#    दूसरा विकर्ण खींचकर समांतर चतुर्भुज को पूरा करें (<math>x </math>की पूंछ से <math>y </math> के शीर्ष  तक)।
#    परिणामी सदिश <math>x-y </math> (या <math>x+y</math> को इस विकर्ण द्वारा निरूपित किया जाता है।
 
सदिश <math>x</math> और <math>y</math> के बारे में दी गई जानकारी के आधार पर त्रिकोणमिति या सदिश अपघटन जैसी विधियों का उपयोग करके सदिश <math>x-y (or\,\,x+y)</math> की लंबाई और दिशा निर्धारित की जा सकती है।
 
== संक्षेप में ==
जोड़ का समांतर चतुर्भुज नियम इस सिद्धांत पर आधारित है कि सदिशों को अंतरिक्ष में विस्थापन के रूप में मानकर उन्हें एक साथ जोड़ा जा सकता है। यह नियम द्वि-आयामी और त्रि-आयामी दोनों सादिशों पर लागू होता है।
[[Category:समतल में गति]]
[[Category:समतल में गति]]
[[Category:भौतिक विज्ञान]]
[[Category:कक्षा-11]]

Latest revision as of 10:59, 7 June 2024

Parallelogram law of addition of vectors

सदिशों के योग का समांतर चतुर्भुज नियम, एक विधि है, जिसका उपयोग परिणामी सदिश को खोजने के लिए किया जाता है। जब दो सदिश एक साथ जोड़े जाते हैं। इस नियम के अनुसार, यदि दो सदिश समांतर चतुर्भुज की दो आसन्न भुजाओं द्वारा दर्शाए जाते हैं, तो समांतर चतुर्भुज का विकर्ण, दो सदिशों के उभयनिष्ठ बिंदु से प्रारंभ होकर, परिणामी सदिश का प्रतिनिधित्व करता है।

गणित में

समांतर चतुर्भुज नियम का सबसे सरल रूप (जिसे समांतर चतुर्भुज पहचान भी कहा जाता है) प्राथमिक ज्यामिति से संबंधित है। इसमें कहा गया है कि एक समांतर चतुर्भुज की चारों भुजाओं की लंबाई के वर्गों का योग दो विकर्णों की लंबाई के वर्गों के योग के बराबर होता है। पक्षों के लिए, इन अंकन (नोटेशन) का उपयोग करते हैं: , , , । लेकिन चूंकि यूक्लिडियन ज्यामिति में एक समांतर चतुर्भुज की सम्मुख भुजाएं आवश्यक रूप से बराबर होती हैं, यानी और , नियम को इस प्रकार कहा जा सकता है

यदि समांतर चतुर्भुज एक आयत है, तो दोनों विकर्ण समान लंबाई के हैं

और कथन पाइथागोरस प्रमेय को कम कर देता है। सामान्य चतुर्भुज के लिए जिसकी चार भुजाएँ आवश्यक रूप से समान नहीं हैं,

जहां विकर्णों के मध्य बिंदुओं को जोड़ने वाले रेखा खंड की लंबाई है। आरेख से यह देखा जा सकता है कि समांतर चतुर्भुज के लिए और इसलिए सामान्य सूत्र समांतर चतुर्भुज नियम को सरल बनाता है।

गणितीय रूप से

Parallelogram law.svg

यदि दो सदिश और दीये गए हैं, तो उनके परिणामी सदिश को खोजने के लिए, समांतर चतुर्भुज नियम का उपयोग कीया जा सकता है। यह करने के लीये ,नीचे दीये गए बिंदू की विधि अपनानी होगी :

  1.    सदिश खींचिए, जिसका पुच्छ मूल बिंदु पर हो।
  2.    सदिश के शीर्ष से, सदिश को ऐसे खीचऐं की सदिश के शीर्ष पर, सदिश की पुच्छ हो ।
  3.    दूसरा विकर्ण खींचकर समांतर चतुर्भुज को पूरा करें (की पूंछ से के शीर्ष तक)।
  4.    परिणामी सदिश (या को इस विकर्ण द्वारा निरूपित किया जाता है।

सदिश और के बारे में दी गई जानकारी के आधार पर त्रिकोणमिति या सदिश अपघटन जैसी विधियों का उपयोग करके सदिश की लंबाई और दिशा निर्धारित की जा सकती है।

संक्षेप में

जोड़ का समांतर चतुर्भुज नियम इस सिद्धांत पर आधारित है कि सदिशों को अंतरिक्ष में विस्थापन के रूप में मानकर उन्हें एक साथ जोड़ा जा सकता है। यह नियम द्वि-आयामी और त्रि-आयामी दोनों सादिशों पर लागू होता है।