प्रतिरोधकता के ताप पर निर्भरता: Difference between revisions

From Vidyalayawiki

Listen

No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Temperature dependence of resistivity
Temperature dependence of resistivity


प्रतिरोधकता (<math>\rho</math> ) सामग्रियों की एक मौलिक संपत्ति है, जो विद्युतीय प्रवाह का विरोध कर,उस सामग्री-विशेष की प्रतिरोधक क्षमता को निर्धारित करती है। यह संपत्ति सीधे रूप से विद्युत प्रतिरोध ( <math>R</math>) से संबंधित है और अनुप्रस्थ-अनुभागीय क्षेत्र ( सामग्री का <math>A</math> ), जैसा कि सूत्र द्वारा दिया गया है:
प्रतिरोधकता (<math>\rho</math> ) सामग्रियों की एक मौलिक संपत्ति है, जो विद्युतीय प्रवाह का विरोध कर,उस सामग्री-विशेष की प्रतिरोधक क्षमता को निर्धारित करती है। यह संपत्ति सीधे रूप से विद्युत प्रतिरोध ( <math>R</math>) से संबंधित है और अनुप्रस्थ-अनुभागीय क्षेत्र ( सामग्री का <math>A</math> ), जैसा कि सूत्र  


<math>R=\rho \frac{l}{A},</math>
<math>R=\rho \frac{l}{A},</math>
द्वारा दिया गया है ।


जहाँ ,  
जहाँ ,  
Line 31: Line 33:
अर्धचालकों में,तापमान के बढ़ाव-घटाव से प्रतिरोधकता में आए बदलाव का ज्ञान की खोज, धातुओं के समतुल्य व्यवहार (बढ़ते-घटते तापमान के संदर्भ में) की अपेक्षा, अधिक जटिल है। अन्तस्थ अर्धचालक ( शुद्ध, पूर्ववत ) में प्रतिरोधकता का एक नकारात्मक तापमान गुणांक होता है, जिसका अर्थ है कि बढ़ते तापमान के साथ उनकी प्रतिरोधकता कम हो जाती है। इस व्यवहार को थर्मल ऊर्जा के कारण उच्च तापमान पर उत्पन्न चार्ज वाहक ( इलेक्ट्रॉनों या छेद ) की बढ़ती संख्या से समझाया जा सकता है।अधिक चार्ज वाहक बेहतर विद्युत चालकता और कम प्रतिरोधकता के परिणामस्वरूप होते हैं ।  
अर्धचालकों में,तापमान के बढ़ाव-घटाव से प्रतिरोधकता में आए बदलाव का ज्ञान की खोज, धातुओं के समतुल्य व्यवहार (बढ़ते-घटते तापमान के संदर्भ में) की अपेक्षा, अधिक जटिल है। अन्तस्थ अर्धचालक ( शुद्ध, पूर्ववत ) में प्रतिरोधकता का एक नकारात्मक तापमान गुणांक होता है, जिसका अर्थ है कि बढ़ते तापमान के साथ उनकी प्रतिरोधकता कम हो जाती है। इस व्यवहार को थर्मल ऊर्जा के कारण उच्च तापमान पर उत्पन्न चार्ज वाहक ( इलेक्ट्रॉनों या छेद ) की बढ़ती संख्या से समझाया जा सकता है।अधिक चार्ज वाहक बेहतर विद्युत चालकता और कम प्रतिरोधकता के परिणामस्वरूप होते हैं ।  


हालांकि, बहिरस्थ अर्धचालकों में ( डोप्ड ), अपमिश्रण (डोपिंग) के प्रकार के आधार पर व्यवहार में भिन्नता पाई जा सकती है।उदाहरण के लिए, एन-प्रकार (n-type) के अर्धचालकों की प्रतिरोधकता पर ,बढ़ते तापमान का नकारात्मक प्रभाव पड़ता है । इस ही प्रकार पी-प्रकार (p-type) के अर्धचालकों में प्रतिरोधकता का बढ़ते तापमान से संबंध सकारात्मक होता है। इस व्यवहार से यह भी प्रदर्शित होता है की अर्धचालकों में तापमान के बढ़ाव-घटाव की निर्भरता आवेश वाहकों की एकाग्रता और गतिशीलता से प्रभावित होती है।  
हालांकि, बहिरस्थ अर्धचालकों में ( डोप्ड ), अपमिश्रण (डोपिंग) के प्रकार के आधार पर व्यवहार में भिन्नता पाई जा सकती है।उदाहरण के लिए, एन-प्रकार (n-type) के अर्धचालकों की प्रतिरोधकता पर ,बढ़ते तापमान का नकारात्मक प्रभाव पड़ता है । इस ही प्रकार पी-प्रकार (p-type) के अर्धचालकों में प्रतिरोधकता का बढ़ते तापमान से संबंध सकारात्मक होता है। इस व्यवहार से यह भी प्रदर्शित होता है की अर्धचालकों में तापमान के बढ़ाव-घटाव की निर्भरता आवेश वाहकों की एकाग्रता और गतिशीलता से प्रभावित होती है। [[File:Superconductivity 1911.gif|thumb|अतिचालकता आ जाने पर पहला माप :तापमान के फलन के रूप में पारे की केशिका की प्रतिरोधकता।1911 में हेइके कामेरलिंग ओन्स द्वारा किए गए प्रयोग का मूल डेटा तापमान के एक कार्य के रूप में पारे के तार की  प्रतिरोधकता को दर्शाता है। प्रतिरोध में अचानक गिरावट,पारे की इस पदार्थ व्यवस्था में अतिचालकता के संक्रमण (प्राकट्य का परिचायक) को दर्शाता है।]]
 
== कुचालक (इन्सुलेटर) में  ==
== कुचालक (इन्सुलेटर) में  ==
प्रायः,कुचालक पदार्थों में (इन्सुलेटर),प्रतिरोधकता के व्यवहार, की तापमान पर निर्भरता बहुत क्षीण होती है। जैसा कि उनके नाम से पता चलता है, इन सामग्रियों में अत्यधिक उच्च प्रतिरोधकता है और चालन के लिए बहुत कम मात्र में आवेश वाहक (चार्ज) वाहक उपलब्ध हैं। इस प्रकार, तापमान में परिवर्तन का उनकी प्रतिरोधकता पर न्यूनतम प्रभाव पड़ता है।
प्रायः,कुचालक पदार्थों में (इन्सुलेटर),प्रतिरोधकता के व्यवहार, की तापमान पर निर्भरता बहुत क्षीण होती है। जैसा कि उनके नाम से पता चलता है, इन सामग्रियों में अत्यधिक उच्च प्रतिरोधकता है और चालन के लिए बहुत कम मात्र में आवेश वाहक (चार्ज) वाहक उपलब्ध हैं। इस प्रकार, तापमान में परिवर्तन का उनकी प्रतिरोधकता पर न्यूनतम प्रभाव पड़ता है।


== अतिचालकता ==
== अतिचालकता ==
[[File:Superconductivity 1911.gif|thumb|अतिचालकता आ जाने पर पहला माप :तापमान के फलन के रूप में पारे की केशिका की प्रतिरोधकता।1911 में हेइके कामेरलिंग ओन्स द्वारा किए गए प्रयोग का मूल डेटा तापमान के एक कार्य के रूप में पारे के तार की  प्रतिरोधकता को दर्शाता है। प्रतिरोध में अचानक गिरावट,पारे की इस पदार्थ व्यवस्था में अतिचालकता के संक्रमण (प्राकट्य का परिचायक) को दर्शाता है।]]चूंकि एक प्रकार से अतिचालकता पदार्थों का व्यवहार ही है, इस लीए पदार्थों के इस प्रकार के व्यवहार में प्रतिरोधकता के विपरीत परिस्थिति (अतिचालकता) का अध्ययन निहित है । पारे जैसे कुछ धातु पदार्थ, जो साधारण तापमान व दाब  की स्थिति में , ठोस अवस्था न प्रदर्शित कर तरल जैसा व्यवहार दिखाते हैं,में अतिचालकता का प्रदर्शन स्वाभाविक रूप से निहित है। इस प्रदर्शन को साथ में दीये गए चित्र द्वारा दर्शाया गया है     
चूंकि एक प्रकार से अतिचालकता पदार्थों का व्यवहार ही है, इस लीए पदार्थों के इस प्रकार के व्यवहार में प्रतिरोधकता के विपरीत परिस्थिति (अतिचालकता) का अध्ययन निहित है । पारे जैसे कुछ धातु पदार्थ, जो साधारण तापमान व दाब  की स्थिति में , ठोस अवस्था न प्रदर्शित कर तरल जैसा व्यवहार दिखाते हैं,में अतिचालकता का प्रदर्शन स्वाभाविक रूप से निहित है। इस प्रदर्शन को साथ में दीये गए चित्र द्वारा दर्शाया गया है     


== संक्षेप में ==
== संक्षेप में ==
प्रायः ,धातुओं में प्रतिरोधकता की तापमान पर निर्भरता सकारात्मक रूप धारण कीये रहती है ( यानि ,प्रतिरोधकता तापमान के साथ बढ़ जाती है ), जबकि अन्तस्थ अर्धचालकों में, यह नकारात्मक है ( प्रतिरोधकता,तापमान में बढ़ाव के साथ साथ क्षीण हो जाती है )। बहिरस्थअर्धचालक और कुचालक अपने विशिष्ट गुणों के आधार पर तापमान बदलाव के कारण न्यून मात्रा की निर्भरता दिखा सकते हैं।विभिन्न तापमान स्थितियों के आधीन विद्युत सर्किट और उपकरणों के व्यवहार का अध्ययन करने के लिए इन अवधारणाओं को समझना महत्वपूर्ण है।  
प्रायः ,धातुओं में प्रतिरोधकता की तापमान पर निर्भरता सकारात्मक रूप धारण कीये रहती है ( यानि ,प्रतिरोधकता तापमान के साथ बढ़ जाती है ), जबकि अन्तस्थ अर्धचालकों में, यह नकारात्मक है ( प्रतिरोधकता,तापमान में बढ़ाव के साथ साथ क्षीण हो जाती है )। बहिरस्थअर्धचालक और कुचालक अपने विशिष्ट गुणों के आधार पर तापमान बदलाव के कारण न्यून मात्रा की निर्भरता दिखा सकते हैं।विभिन्न तापमान स्थितियों के आधीन विद्युत सर्किट और उपकरणों के व्यवहार का अध्ययन करने के लिए इन अवधारणाओं को समझना महत्वपूर्ण है।  
[[Category:विद्युत् धारा]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]]
[[Category:विद्युत् धारा]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]]

Latest revision as of 14:49, 10 June 2024

Temperature dependence of resistivity

प्रतिरोधकता ( ) सामग्रियों की एक मौलिक संपत्ति है, जो विद्युतीय प्रवाह का विरोध कर,उस सामग्री-विशेष की प्रतिरोधक क्षमता को निर्धारित करती है। यह संपत्ति सीधे रूप से विद्युत प्रतिरोध ( ) से संबंधित है और अनुप्रस्थ-अनुभागीय क्षेत्र ( सामग्री का ), जैसा कि सूत्र

द्वारा दिया गया है ।

जहाँ ,

प्रतिरोध को , प्रतिरोधकता को , लंबाई को , क्रॉस-अनुभागीय क्षेत्र को से दर्शाया गया है।

यदि, प्रतिरोधकता के तापमान पर निर्भरता पर ध्यान दीया जाएगा, तो यह पाया जाता है की विलग प्रकार की सामग्री विलग प्रकार का व्यवहार प्रदर्शित करती हैं  :

   धातुओं में

   अधिकांश धातुओं में, तापमान में वृद्धि के साथ प्रतिरोधकता बढ़ जाती है।इस व्यवहार को इलेक्ट्रॉनों के बिखरने के माध्यम से समझा जा सकता है।कम तापमान पर, इलेक्ट्रॉन कम तापीय दोलन का अनुभव करते हैं और धातु का स्फटिक जालक(क्रिस्टल लैटिस,आंग्ल भाषा में crystal lattice ) के माध्यम से होकर अधिक स्वतंत्र रूप से आगे बढ़ते हैं, जिससे उसस धातु के प्रतिरूप की प्रतिरोधकता, का मात्रक लघुतर रहता है।हालांकि, जैसे-जैसे तापमान बढ़ता है, स्फटिक-जालक-कंपन (फोनन बिखराव आंग्ल भाषा में phonon scattering) की अधिकता,आवेशित कणों (मुख्यता इलेक्ट्रानों से) का बहाव , न्यून तापित अवस्था में स्फटिक-जालक के माध्यम से हो रहे बहाव की अपेक्षा अधिक महत्वपूर्ण हो जाता है, जिससे इलेक्ट्रॉनों और फोनन के बीच अधिक लगातार टकराव होता है।ये टकराव इलेक्ट्रॉन की गति में बाधा डालते हैं, जिसके परिणामस्वरूप अधिक तापमान पर धातुओं में प्रतिरोधकता में वृद्धि पाई जाती है।

प्रायः ,धातुओं में, प्रतिरोधकता की तापमान पर निर्भरता में इलेक्ट्रॉन-फॉनन बिखराव को ख्यापित करने के लीए "बलोच-ग्रुएनसेन सूत्र" का उपयोग होता है:

जहाँ पर :

तापमान पर प्रतिरोधकता है,

पूर्ण शून्य पर प्रतिरोधकता है ,

प्रतिरोधकता का तापमान गुणांक है, और

केल्विन में तापमान है.

अर्धचालक में

अर्धचालकों में,तापमान के बढ़ाव-घटाव से प्रतिरोधकता में आए बदलाव का ज्ञान की खोज, धातुओं के समतुल्य व्यवहार (बढ़ते-घटते तापमान के संदर्भ में) की अपेक्षा, अधिक जटिल है। अन्तस्थ अर्धचालक ( शुद्ध, पूर्ववत ) में प्रतिरोधकता का एक नकारात्मक तापमान गुणांक होता है, जिसका अर्थ है कि बढ़ते तापमान के साथ उनकी प्रतिरोधकता कम हो जाती है। इस व्यवहार को थर्मल ऊर्जा के कारण उच्च तापमान पर उत्पन्न चार्ज वाहक ( इलेक्ट्रॉनों या छेद ) की बढ़ती संख्या से समझाया जा सकता है।अधिक चार्ज वाहक बेहतर विद्युत चालकता और कम प्रतिरोधकता के परिणामस्वरूप होते हैं ।

हालांकि, बहिरस्थ अर्धचालकों में ( डोप्ड ), अपमिश्रण (डोपिंग) के प्रकार के आधार पर व्यवहार में भिन्नता पाई जा सकती है।उदाहरण के लिए, एन-प्रकार (n-type) के अर्धचालकों की प्रतिरोधकता पर ,बढ़ते तापमान का नकारात्मक प्रभाव पड़ता है । इस ही प्रकार पी-प्रकार (p-type) के अर्धचालकों में प्रतिरोधकता का बढ़ते तापमान से संबंध सकारात्मक होता है। इस व्यवहार से यह भी प्रदर्शित होता है की अर्धचालकों में तापमान के बढ़ाव-घटाव की निर्भरता आवेश वाहकों की एकाग्रता और गतिशीलता से प्रभावित होती है।

अतिचालकता आ जाने पर पहला माप :तापमान के फलन के रूप में पारे की केशिका की प्रतिरोधकता।1911 में हेइके कामेरलिंग ओन्स द्वारा किए गए प्रयोग का मूल डेटा तापमान के एक कार्य के रूप में पारे के तार की प्रतिरोधकता को दर्शाता है। प्रतिरोध में अचानक गिरावट,पारे की इस पदार्थ व्यवस्था में अतिचालकता के संक्रमण (प्राकट्य का परिचायक) को दर्शाता है।

कुचालक (इन्सुलेटर) में

प्रायः,कुचालक पदार्थों में (इन्सुलेटर),प्रतिरोधकता के व्यवहार, की तापमान पर निर्भरता बहुत क्षीण होती है। जैसा कि उनके नाम से पता चलता है, इन सामग्रियों में अत्यधिक उच्च प्रतिरोधकता है और चालन के लिए बहुत कम मात्र में आवेश वाहक (चार्ज) वाहक उपलब्ध हैं। इस प्रकार, तापमान में परिवर्तन का उनकी प्रतिरोधकता पर न्यूनतम प्रभाव पड़ता है।

अतिचालकता

चूंकि एक प्रकार से अतिचालकता पदार्थों का व्यवहार ही है, इस लीए पदार्थों के इस प्रकार के व्यवहार में प्रतिरोधकता के विपरीत परिस्थिति (अतिचालकता) का अध्ययन निहित है । पारे जैसे कुछ धातु पदार्थ, जो साधारण तापमान व दाब की स्थिति में , ठोस अवस्था न प्रदर्शित कर तरल जैसा व्यवहार दिखाते हैं,में अतिचालकता का प्रदर्शन स्वाभाविक रूप से निहित है। इस प्रदर्शन को साथ में दीये गए चित्र द्वारा दर्शाया गया है

संक्षेप में

प्रायः ,धातुओं में प्रतिरोधकता की तापमान पर निर्भरता सकारात्मक रूप धारण कीये रहती है ( यानि ,प्रतिरोधकता तापमान के साथ बढ़ जाती है ), जबकि अन्तस्थ अर्धचालकों में, यह नकारात्मक है ( प्रतिरोधकता,तापमान में बढ़ाव के साथ साथ क्षीण हो जाती है )। बहिरस्थअर्धचालक और कुचालक अपने विशिष्ट गुणों के आधार पर तापमान बदलाव के कारण न्यून मात्रा की निर्भरता दिखा सकते हैं।विभिन्न तापमान स्थितियों के आधीन विद्युत सर्किट और उपकरणों के व्यवहार का अध्ययन करने के लिए इन अवधारणाओं को समझना महत्वपूर्ण है।