आवेशों के निकाय के कारण विभव: Difference between revisions
Listen
No edit summary |
No edit summary |
||
(23 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
Potential due to a system of charges | Potential due to a system of charges | ||
आवेशों की एक प्रणाली के | बिंदु आवेशों की प्रणाली में किसी निर्धारित क्षेत्र में स्थित ऐसे स्थान, जिसका एक दीये हुए संदर्भ वृत (आंग्ल भाषा में रेफ्रन्स फ्रेम : reference frame) के मूल से दूरी <math>r </math> है ,पर विद्युत विभव,आवेशों की उस प्रणाली के प्रत्येक बिंदु आवेश के कारण उपजे व्यष्टि (व्यक्तिगत) विद्युत विभव के योग के समतुल्य होती है। यह तथ्य बिंदु आवेशों की प्रणाली की इस गणना में महत्वपूर्ण रूप है और इसे सरल बनाता है।सादिशों (वेक्टर ) का उपयोग कर विद्युत क्षेत्रों को जोड़ने की तुलना में विभव क्षेत्रों को जोड़ना (जो की एक आदिश प्रणाली है) सरल है। | ||
== विशेष रूप से == | |||
===== असतत बिंदु आवेश ===== | |||
संदर्भ वृत पर स्थितः किसी बिंदु <math>r_{i},</math>पर असतत बिंदु आवेश के एक नियोजन <math>q_{i},</math> का (सह) विभव<math>V_{E}</math> बन जाती है,जिसकी गणना निम्नलिखित सूत्र से की जा सकती है: | |||
[[File:VFPt minus thumb potential+contour.svg|thumb|ऋणात्मक बिंदु आवेश का क्षेत्र. क्षमता वाला थंबनेल संस्करण सकारात्मक (एक्वा) से तटस्थ (पीला) और समविभव रेखाओं के रंग के रूप में दिखाया गया है]] | |||
<math> V_\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^n\frac{q_i}{|\mathbf{r}-\mathbf{r}_i|},</math> | |||
जहाँ | |||
<math>r </math> वह बिंदु है जिस पर विभव का मूल्यांकन किया जाता है; | |||
<math>r_{i}</math>वह बिंदु है जिस पर शून्येतर आवेश होता है; | |||
और | |||
<math>q_{i}</math> बिंदु <math>r_{i}</math>पर आवेश है। | |||
===== सतत बिंदु आवेश ===== | |||
[[File:VFPt plus thumb potential+contour.svg|thumb|धनात्मक बिंदु आवेश का क्षेत्र. संभावित लघु संस्करण को सकारात्मक (फूशिया) से तटस्थ (पीला) और समविभव रेखाओं के रंग के रूप में दिखाया गया है।]] | |||
यदि संदर्भ वृत पर बिंदु आवेशों का नियोजित वितरण सतत है और जिसका प्रतिनिधत्व, एक गणितीय फलन <math>\rho (r)</math> से किया जा सकता है तो,ऐसे आवेश वितरण से उपजी विभवता को निम्नलिखित सूत्रों से गणित कीया जा सकता है : | |||
<math> V_\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_R \frac{\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} \mathrm{d}^3 r'\,</math>, | |||
जहाँ, | |||
<math>r </math> एक बिंदु है जिस पर क्षमता का मूल्यांकन किया जाता है; | |||
<math>R</math> एक ऐसा क्षेत्र है जिसमें वे सभी बिंदु सम्मलित हैं जिन पर आवेश घनत्व शून्येतर है; | |||
और | |||
<math>r{{'}}</math> ,क्षेत्र <math>R</math> के अंदर एक बिंदु है । | |||
संधारित्र की धारिता संधारित्र की | == ध्यान देने योग्य == | ||
आवेशों की एक प्रणाली के कारण होने वाला विभव, एक अदिश राशि है, जिसका अर्थ है, कि इसमें परिमाण तो हैं ,लेकिन कोई दिशा नहीं है। आवेशों की एक प्रणाली के कारण होने वाली विभव को वोल्ट (<math>V</math>) में मापा जा सकता है। | |||
[[File:VFPt charges plus minus potential+contour.svg|thumb|एक परिमित दूरी के साथ एक धनात्मक और एक ऋणात्मक बिंदु आवेश का क्षेत्र, एक परिमित आकार के द्विध्रुव का निर्माण करता है। क्षेत्र (फ़ील्ड) रेखाओं के आकार की सटीक गणना की जाती है। रेखाओं का घनत्व आवेशों के निकट और दूर की क्षेत्र शक्ति का अनुमान लगाने के लिए एक धयोतक है, जिसे रेखाओं के एक निश्चित नियोजन के द्वारा भी निश्चित रूप से प्राप्त नहीं किया जा सकता है। विद्युत क्षमता को पृष्ठभूमि रंग द्वारा दिखाया गया है, जहां पीला तटस्थ है, साथ में समान रूप से दूरी वाली समविभव रेखाएं भी हैं।]] | |||
आवेशों के नियोजन मुख्यतः दो प्रकार से हो सकता है । यद्यपि असतत नियोजन में आवेशों का विद्युतीय विभव, सत्तत नियोजन से भिन्नता दिखाते हैं,तबभी दोनों की गणितीय मापन विधि में बहुत अधिक भेद नहीं है । जहाँ असतत नियोजन प्रतीक <math>\Sigma</math> (कैपिटल सिग्मा) का उपयोग कर समान आवेश समूह के योग से उपजे विभव को इंगित करता है,वहीं सत्तत नियोजन,समाकलन <math>\int </math> का उपयोग कर आवेशों से उपजे विभव (समूह रूप में ) का गणितीय मापन करता है। | |||
सतत व असतत विद्युत विभव की गणना लिए ऊपर दिए गए समीकरण (और यहां प्रयुक्त सभी समीकरण) एसआई इकाइयों द्वारा आवश्यक रूपों में हैं। इकाइयों की कुछ अन्य (कम सामान्य) प्रणालियों में, जैसे कि सीजीएस-गाऊसी, इनमें से कई समीकरण बदल दिए जाएंगे। | |||
== अनुप्रयोग == | |||
यहाँ कुछ उदाहरण दिए जा रहे हैं ,जो भौतिकी में आवेशों की प्रणाली के कारण स्थितःज विभव के उपयोग को दर्शाते हैं : | |||
संधारित्र की धारिता, संधारित्र की पट्टिका और पट्टिकाओं के क्षेत्रफल के बीच विभव अंतर से यह निर्धारित होता है की अभियांत्रिक अनुप्रयोगों में मूल्यवान धातुओं का उपयोग किस मात्रा में होगा। | |||
आवेशों की एक प्रणाली के कारण विद्युत क्षेत्र की गणना विभव की ऋणात्मक प्रवणता लेकर की जा सकती है। | आवेशों की एक प्रणाली के कारण विद्युत क्षेत्र की गणना विभव की ऋणात्मक प्रवणता लेकर की जा सकती है। | ||
[[Category:स्थिर्वैद्युत विभव | |||
== संक्षेप में == | |||
गणित की सही समझ से आवेशों की एक प्रणाली के नियोजन से उपजे विभव के भेद उस प्रणाली की सत्तता अथवा असतता के कारण उपजते हैं। इस विषमता का परिणाम है की इस परिस्थति के कई अलग-अलग अनुप्रयोगों हैं, जैसे एक संधारित्र की धारिता, आवेशों की एक प्रणाली के कारण विद्युत क्षेत्र और एक आवेश को एक बिंदु से दूसरे बिंदु तक ले जाने में किए गए कीये गए कार्य की गणना। | |||
इस सब के चलते आवेशों की एक प्रणाली का अध्ययन महत्वपूर्ण हो जाता है। | |||
[[Category:स्थिर्वैद्युत विभव तथा धारिता]] | |||
[[Category:भौतिक विज्ञान]][[Category:कक्षा-12]] |
Latest revision as of 14:29, 17 June 2024
Potential due to a system of charges
बिंदु आवेशों की प्रणाली में किसी निर्धारित क्षेत्र में स्थित ऐसे स्थान, जिसका एक दीये हुए संदर्भ वृत (आंग्ल भाषा में रेफ्रन्स फ्रेम : reference frame) के मूल से दूरी है ,पर विद्युत विभव,आवेशों की उस प्रणाली के प्रत्येक बिंदु आवेश के कारण उपजे व्यष्टि (व्यक्तिगत) विद्युत विभव के योग के समतुल्य होती है। यह तथ्य बिंदु आवेशों की प्रणाली की इस गणना में महत्वपूर्ण रूप है और इसे सरल बनाता है।सादिशों (वेक्टर ) का उपयोग कर विद्युत क्षेत्रों को जोड़ने की तुलना में विभव क्षेत्रों को जोड़ना (जो की एक आदिश प्रणाली है) सरल है।
विशेष रूप से
असतत बिंदु आवेश
संदर्भ वृत पर स्थितः किसी बिंदु पर असतत बिंदु आवेश के एक नियोजन का (सह) विभव बन जाती है,जिसकी गणना निम्नलिखित सूत्र से की जा सकती है:
जहाँ
वह बिंदु है जिस पर विभव का मूल्यांकन किया जाता है;
वह बिंदु है जिस पर शून्येतर आवेश होता है;
और
बिंदु पर आवेश है।
सतत बिंदु आवेश
यदि संदर्भ वृत पर बिंदु आवेशों का नियोजित वितरण सतत है और जिसका प्रतिनिधत्व, एक गणितीय फलन से किया जा सकता है तो,ऐसे आवेश वितरण से उपजी विभवता को निम्नलिखित सूत्रों से गणित कीया जा सकता है :
,
जहाँ,
एक बिंदु है जिस पर क्षमता का मूल्यांकन किया जाता है;
एक ऐसा क्षेत्र है जिसमें वे सभी बिंदु सम्मलित हैं जिन पर आवेश घनत्व शून्येतर है;
और
,क्षेत्र के अंदर एक बिंदु है ।
ध्यान देने योग्य
आवेशों की एक प्रणाली के कारण होने वाला विभव, एक अदिश राशि है, जिसका अर्थ है, कि इसमें परिमाण तो हैं ,लेकिन कोई दिशा नहीं है। आवेशों की एक प्रणाली के कारण होने वाली विभव को वोल्ट () में मापा जा सकता है।
आवेशों के नियोजन मुख्यतः दो प्रकार से हो सकता है । यद्यपि असतत नियोजन में आवेशों का विद्युतीय विभव, सत्तत नियोजन से भिन्नता दिखाते हैं,तबभी दोनों की गणितीय मापन विधि में बहुत अधिक भेद नहीं है । जहाँ असतत नियोजन प्रतीक (कैपिटल सिग्मा) का उपयोग कर समान आवेश समूह के योग से उपजे विभव को इंगित करता है,वहीं सत्तत नियोजन,समाकलन का उपयोग कर आवेशों से उपजे विभव (समूह रूप में ) का गणितीय मापन करता है।
सतत व असतत विद्युत विभव की गणना लिए ऊपर दिए गए समीकरण (और यहां प्रयुक्त सभी समीकरण) एसआई इकाइयों द्वारा आवश्यक रूपों में हैं। इकाइयों की कुछ अन्य (कम सामान्य) प्रणालियों में, जैसे कि सीजीएस-गाऊसी, इनमें से कई समीकरण बदल दिए जाएंगे।
अनुप्रयोग
यहाँ कुछ उदाहरण दिए जा रहे हैं ,जो भौतिकी में आवेशों की प्रणाली के कारण स्थितःज विभव के उपयोग को दर्शाते हैं :
संधारित्र की धारिता, संधारित्र की पट्टिका और पट्टिकाओं के क्षेत्रफल के बीच विभव अंतर से यह निर्धारित होता है की अभियांत्रिक अनुप्रयोगों में मूल्यवान धातुओं का उपयोग किस मात्रा में होगा।
आवेशों की एक प्रणाली के कारण विद्युत क्षेत्र की गणना विभव की ऋणात्मक प्रवणता लेकर की जा सकती है।
संक्षेप में
गणित की सही समझ से आवेशों की एक प्रणाली के नियोजन से उपजे विभव के भेद उस प्रणाली की सत्तता अथवा असतता के कारण उपजते हैं। इस विषमता का परिणाम है की इस परिस्थति के कई अलग-अलग अनुप्रयोगों हैं, जैसे एक संधारित्र की धारिता, आवेशों की एक प्रणाली के कारण विद्युत क्षेत्र और एक आवेश को एक बिंदु से दूसरे बिंदु तक ले जाने में किए गए कीये गए कार्य की गणना।
इस सब के चलते आवेशों की एक प्रणाली का अध्ययन महत्वपूर्ण हो जाता है।