इलेक्ट्रान उत्सर्जन: Difference between revisions
Line 42: | Line 42: | ||
===== क्षेत्र उत्सर्जन ===== | ===== क्षेत्र उत्सर्जन ===== | ||
क्षेत्र उत्सर्जन (फील्ड इमिशन : आंग्ल भाषा में Field Emission) तब होता है,जब एक बहुत दृढ़ विद्युत क्षेत्र को किसी सामग्री पर | क्षेत्र उत्सर्जन (फील्ड इमिशन : आंग्ल भाषा में Field Emission) तब होता है,जब एक बहुत दृढ़ विद्युत क्षेत्र को किसी सामग्री पर आरोपित किया जाता है, जिससे इलेक्ट्रॉन विभव के माध्यम से गुहा रूप बाधा पथ क्षेत्र जैसा बनाते हैं और सतह से उत्सर्जित होते हैं। | ||
====== गणितीय समीकरण (फाउलर-नोर्डहाइम समीकरण) ====== | ====== गणितीय समीकरण (फाउलर-नोर्डहाइम समीकरण) ====== | ||
<math>I=A\frac{V^2}{d^2}e^{-\frac{B}{\sqrt V}} </math> | <math>I=A\frac{V^2}{d^2}e^{-\frac{B}{\sqrt V}} </math> | ||
क्षेत्र उत्सर्जन में वर्तमान (II) फाउलर-नोर्डहाइम समीकरण द्वारा दिया गया है: | क्षेत्र उत्सर्जन में वर्तमान (II) फाउलर-नोर्डहाइम समीकरण द्वारा दिया गया है:जहाँ: | ||
जहाँ: | |||
<math>I</math> उत्सर्जित इलेक्ट्रॉनों की धारा है। | |||
A और B स्थिरांक हैं. | <math>A</math> और <math>B</math> स्थिरांक हैं. | ||
V | <math>V</math> आरोपित वोल्टेज है. | ||
d उत्सर्जक सतह और एकत्रित इलेक्ट्रोड के बीच की दूरी है। | <math>d </math> उत्सर्जक सतह और एकत्रित इलेक्ट्रोड के बीच की दूरी है। | ||
===== द्वितीयक उत्सर्जन ===== | ===== द्वितीयक उत्सर्जन ===== | ||
द्वितीयक उत्सर्जन तब होता है जब इलेक्ट्रॉन किसी सामग्री से टकराते हैं और | द्वितीयक उत्सर्जन, तब होता है जब इलेक्ट्रॉन किसी प्रदार्थ से बनी सामग्री से टकराते हैं और उसकी सतह से अतिरिक्त इलेक्ट्रॉनों के उत्सर्जन का कारण बनते हैं। प्रायः यह फोटोमल्टीप्लायर ट्यूब और इलेक्ट्रॉन मल्टीप्लायर जैसे उपकरणों में देखा जाता है। | ||
== संक्षेप में == | == संक्षेप में == | ||
ये इलेक्ट्रॉन उत्सर्जन के कुछ तंत्र हैं, जिनमें से प्रत्येक की अपनी विशेषताएं और गणितीय विवरण हैं। इलेक्ट्रॉनिक उपकरणों से लेकर वैक्यूम ट्यूब और इलेक्ट्रॉन माइक्रोस्कोपी तक विभिन्न अनुप्रयोगों में इन तंत्रों को समझना महत्वपूर्ण है। | ये इलेक्ट्रॉन उत्सर्जन के कुछ तंत्र हैं, जिनमें से प्रत्येक की अपनी विशेषताएं और गणितीय विवरण हैं। इलेक्ट्रॉनिक उपकरणों से लेकर वैक्यूम ट्यूब और इलेक्ट्रॉन माइक्रोस्कोपी तक विभिन्न अनुप्रयोगों में इन तंत्रों को समझना महत्वपूर्ण है। | ||
[[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] | [[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] |
Revision as of 09:51, 21 June 2024
electron emission
इलेक्ट्रॉन उत्सर्जन उस प्रक्रिया को संदर्भित करता है जिसके द्वारा किसी सामग्री की सतह से इलेक्ट्रॉनों को छोड़ा जाता है
इलेक्ट्रॉन उत्सर्जन तंत्र
थर्मिओनिक उत्सर्जन
थर्मिओनिक उत्सर्जन में, सामग्री में इलेक्ट्रॉनों की तापीय ऊर्जा के कारण किसी सामग्री की सतह से इलेक्ट्रॉन उत्सर्जित होते हैं। इलेक्ट्रॉन कार्य-कार्य अवरोध को दूर करते हैं और आसपास के स्थान में उत्सर्जित होते हैं।
गणितीय समीकरण
थर्मिओनिक रूप से उत्सर्जित इलेक्ट्रॉनों की धारा () का वर्णन रिचर्डसन-डशमैन समीकरण द्वारा किया गया है:
कहाँ:
उत्सर्जित इलेक्ट्रॉनों की धारा है।
रिचर्डसन स्थिरांक है।
परम तापमान है.
सामग्री का कार्य फलन है।
बोल्ट्ज़मैन स्थिरांक है।
फोटोइलेक्ट्रिक उत्सर्जन
फोटोइलेक्ट्रिक उत्सर्जन में, इलेक्ट्रॉन तब उत्सर्जित होते हैं जब फोटॉन (प्रकाश के कण) किसी सामग्री की सतह से टकराते हैं और अपनी ऊर्जा को सामग्री में इलेक्ट्रॉनों में स्थानांतरित करते हैं। यदि आपतित फोटॉन की ऊर्जा सामग्री के कार्य फलन से अधिक है, तो इलेक्ट्रॉन उत्सर्जित होते हैं।
गणितीय समीकरण (आइंस्टीन फोटोइलेक्ट्रिक समीकरण)
जैसा कि पहले बताया गया है:
जहाँ:
आपतित फोटॉन की ऊर्जा है।
सामग्री का कार्य फलन है।
उत्सर्जित इलेक्ट्रॉन की गतिज ऊर्जा है।
क्षेत्र उत्सर्जन
क्षेत्र उत्सर्जन (फील्ड इमिशन : आंग्ल भाषा में Field Emission) तब होता है,जब एक बहुत दृढ़ विद्युत क्षेत्र को किसी सामग्री पर आरोपित किया जाता है, जिससे इलेक्ट्रॉन विभव के माध्यम से गुहा रूप बाधा पथ क्षेत्र जैसा बनाते हैं और सतह से उत्सर्जित होते हैं।
गणितीय समीकरण (फाउलर-नोर्डहाइम समीकरण)
क्षेत्र उत्सर्जन में वर्तमान (II) फाउलर-नोर्डहाइम समीकरण द्वारा दिया गया है:जहाँ:
उत्सर्जित इलेक्ट्रॉनों की धारा है।
और स्थिरांक हैं.
आरोपित वोल्टेज है.
उत्सर्जक सतह और एकत्रित इलेक्ट्रोड के बीच की दूरी है।
द्वितीयक उत्सर्जन
द्वितीयक उत्सर्जन, तब होता है जब इलेक्ट्रॉन किसी प्रदार्थ से बनी सामग्री से टकराते हैं और उसकी सतह से अतिरिक्त इलेक्ट्रॉनों के उत्सर्जन का कारण बनते हैं। प्रायः यह फोटोमल्टीप्लायर ट्यूब और इलेक्ट्रॉन मल्टीप्लायर जैसे उपकरणों में देखा जाता है।
संक्षेप में
ये इलेक्ट्रॉन उत्सर्जन के कुछ तंत्र हैं, जिनमें से प्रत्येक की अपनी विशेषताएं और गणितीय विवरण हैं। इलेक्ट्रॉनिक उपकरणों से लेकर वैक्यूम ट्यूब और इलेक्ट्रॉन माइक्रोस्कोपी तक विभिन्न अनुप्रयोगों में इन तंत्रों को समझना महत्वपूर्ण है।