अनिश्चितता सिद्धांत: Difference between revisions

From Vidyalayawiki

Listen

No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 4: Line 4:


== अनिश्चितता सिद्धांत की अवधारणा ==
== अनिश्चितता सिद्धांत की अवधारणा ==
वर्नर हाइजेनबर्ग द्वारा तैयार अनिश्चितता सिद्धांत में कहा गया है कि एक मौलिक सीमा है कि हम किसी कण के पूरक गुणों के कुछ जोड़े, जैसे उसकी स्थिति और गति को एक साथ कितनी सटीकता से जान सकते हैं। ये गुण कणों की दोहरी प्रकृति से संबंधित हैं, जो कण-समान और तरंग-समान दोनों व्यवहार प्रदर्शित करते हैं।
वर्नर हाइजेनबर्ग द्वारा संयोजित अनिश्चितता सिद्धांत में कहा गया है कि एक मौलिक सीमा है कि हम किसी कण के पूरक गुणों के कुछ जोड़े, जैसे उसकी स्थिति और गति को एक साथ कितनी सटीकता से जान सकते हैं। ये गुण कणों की दोहरी प्रकृति से संबंधित हैं, जो कण-समान और तरंग-समान दोनों व्यवहार प्रदर्शित करते हैं।


===== महत्वपूर्ण बिन्दु =====
===== महत्वपूर्ण बिन्दु =====


=====    स्थिति (x) =====
=====    स्थिति =====
यह अंतरिक्ष में एक कण के स्थान को दर्शाता है। इसे आम तौर पर मीटर (एम) में मापा जाता है।
किसी भी अंतरिक्ष में एक कण के स्थान को दर्शाता है। इसे आम तौर पर मीटर (<math>m </math>) में मापा जाता है।


======    संवेग (<math>p</math>) ======
======    संवेग ======
संवेग किसी वस्तु के द्रव्यमान और वेग का गुणनफल है। इसे किलोग्राम मीटर प्रति सेकंड (किग्रा·मीटर/सेकेंड) में मापा जाता है।
संवेग  (<math>p</math>) किसी वस्तु के द्रव्यमान और वेग का गुणनफल है। इसे किलोग्राम मीटर प्रति सेकंड (<math>kg\cdot m/s,</math>) में मापा जाता है।


== गणितीय समीकरण ==
== गणितीय समीकरण ==
अनिश्चितता सिद्धांत को गणितीय रूप से इस प्रकार व्यक्त किया जा सकता है:
अनिश्चितता सिद्धांत को गणितीय रूप से इस प्रकार व्यक्त किया जा सकता है:


Δx⋅Δp≥2ℏ​<math>\Delta x\cdot \Delta p\geq 2\hbar,</math>
<math>\Delta x\cdot \Delta p\geq 2\hbar,</math>


   ΔxΔx: स्थिति में अनिश्चितता (मीटर, मी में मापी गई)।
   <math>\Delta x</math>: स्थिति में अनिश्चितता (मीटर, <math>m</math> में मापी गई)।


   ΔpΔp: संवेग में अनिश्चितता (किलो·मीटर/सेकंड में मापी गई)।
   <math>\Delta p</math>: संवेग में अनिश्चितता (किलो·मीटर/सेकंड में मापी गई)।


   ℏℏ: घटा हुआ प्लैंक स्थिरांक (1.0545718×10−341.0545718×10−34 J·s).
   <math>\hbar</math>: घटा हुआ प्लैंक स्थिरांक (<math>1.0545718\times 10 ^{-34}J\cdot s, </math>).


यह समीकरण हमें बताता है कि स्थिति (ΔxΔx) और गति (ΔpΔp) में अनिश्चितताओं का उत्पाद कम प्लैंक स्थिरांक (ℏ/2ℏ/2) के आधे से अधिक या उसके बराबर होना चाहिए। दूसरे शब्दों में, जितना अधिक सटीकता से हम एक गुण (जैसे, स्थिति) को जानते हैं, उतना ही कम हम दूसरे गुण (जैसे, संवेग) को जान सकते हैं, और इसके विपरीत।
समीकरण यह बताता है कि स्थिति (<math>\Delta x</math>) और गति (<math>\Delta p</math>) में अनिश्चितताओं का उत्पाद कम प्लैंक स्थिरांक <math>\hbar/2</math> के आधे से अधिक या उसके बराबर होना चाहिए। दूसरे शब्दों में, जितना अधिक सटीकता से एक गुण (जैसे, स्थिति) की जानकारी होती है, उतना ही कम दूसरे गुण (जैसे, संवेग) को जान सकते हैं


आरेख:
== प्रमुख बिंदु ==
 
*    अनिश्चितता सिद्धांत क्वांटम यांत्रिकी में एक मौलिक अवधारणा है।
*    यह इस बात पर सीमा लगाता है कि हम किसी कण के पूरक गुणों, जैसे स्थिति और गति के कुछ जोड़े को एक साथ कितनी सटीकता से जान सकते हैं।
*    यह सिद्धांत कणों की दोहरी प्रकृति से उत्पन्न होता है, जो तरंग-सदृश और कण-समान दोनों व्यवहार प्रदर्शित करता है।
 
== संक्षेप में ==
अनिश्चितता सिद्धांत एक मौलिक अवधारणा है जो उच्च परिशुद्धता के साथ कणों के कुछ गुणों को एक साथ जानने की हमारी क्षमता की अंतर्निहित सीमाओं को रेखांकित करती है। यह क्वांटम स्तर पर कणों के अनूठे और कभी-कभी प्रति-सहज व्यवहार पर प्रकाश डालता है, जहां पदार्थ की दोहरी प्रकृति स्पष्ट हो जाती है।
[[Category:विकिरण तथा द्रव्य की द्वैत प्रकृति]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]]
[[Category:विकिरण तथा द्रव्य की द्वैत प्रकृति]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]]

Latest revision as of 12:05, 22 June 2024

uncertainity principle

अनिश्चितता सिद्धांत,क्वांटम यांत्रिकी में एक मौलिक अवधारणा है। यह उच्च परिशुद्धता के साथ स्थिति और गति जैसे कणों के कुछ गुणों को एक साथ जानने की हमारी क्षमता की सीमाओं का वर्णन करता है।

अनिश्चितता सिद्धांत की अवधारणा

वर्नर हाइजेनबर्ग द्वारा संयोजित अनिश्चितता सिद्धांत में कहा गया है कि एक मौलिक सीमा है कि हम किसी कण के पूरक गुणों के कुछ जोड़े, जैसे उसकी स्थिति और गति को एक साथ कितनी सटीकता से जान सकते हैं। ये गुण कणों की दोहरी प्रकृति से संबंधित हैं, जो कण-समान और तरंग-समान दोनों व्यवहार प्रदर्शित करते हैं।

महत्वपूर्ण बिन्दु
   स्थिति

किसी भी अंतरिक्ष में एक कण के स्थान को दर्शाता है। इसे आम तौर पर मीटर () में मापा जाता है।

   संवेग

संवेग () किसी वस्तु के द्रव्यमान और वेग का गुणनफल है। इसे किलोग्राम मीटर प्रति सेकंड () में मापा जाता है।

गणितीय समीकरण

अनिश्चितता सिद्धांत को गणितीय रूप से इस प्रकार व्यक्त किया जा सकता है:

   : स्थिति में अनिश्चितता (मीटर, में मापी गई)।

   : संवेग में अनिश्चितता (किलो·मीटर/सेकंड में मापी गई)।

   : घटा हुआ प्लैंक स्थिरांक ().

समीकरण यह बताता है कि स्थिति () और गति () में अनिश्चितताओं का उत्पाद कम प्लैंक स्थिरांक के आधे से अधिक या उसके बराबर होना चाहिए। दूसरे शब्दों में, जितना अधिक सटीकता से एक गुण (जैसे, स्थिति) की जानकारी होती है, उतना ही कम दूसरे गुण (जैसे, संवेग) को जान सकते हैं ।

प्रमुख बिंदु

  •    अनिश्चितता सिद्धांत क्वांटम यांत्रिकी में एक मौलिक अवधारणा है।
  •    यह इस बात पर सीमा लगाता है कि हम किसी कण के पूरक गुणों, जैसे स्थिति और गति के कुछ जोड़े को एक साथ कितनी सटीकता से जान सकते हैं।
  •    यह सिद्धांत कणों की दोहरी प्रकृति से उत्पन्न होता है, जो तरंग-सदृश और कण-समान दोनों व्यवहार प्रदर्शित करता है।

संक्षेप में

अनिश्चितता सिद्धांत एक मौलिक अवधारणा है जो उच्च परिशुद्धता के साथ कणों के कुछ गुणों को एक साथ जानने की हमारी क्षमता की अंतर्निहित सीमाओं को रेखांकित करती है। यह क्वांटम स्तर पर कणों के अनूठे और कभी-कभी प्रति-सहज व्यवहार पर प्रकाश डालता है, जहां पदार्थ की दोहरी प्रकृति स्पष्ट हो जाती है।