मैक्सवेल के समीकरण: Difference between revisions

From Vidyalayawiki

Listen

No edit summary
No edit summary
Line 1: Line 1:
Maxwell's equation
Maxwell's equation


मैक्सवेल के समीकरण विद्युत चुंबकत्व में चार मौलिक समीकरणों का एक सेट हैं जो बताते हैं कि विद्युत और चुंबकीय क्षेत्र अंतरिक्ष के माध्यम से कैसे बातचीत करते हैं और फैलते हैं। ये समीकरण 19वीं शताब्दी में जेम्स क्लर्क मैक्सवेल द्वारा तैयार किए गए थे और इन्हें भौतिकी के इतिहास में सबसे महत्वपूर्ण उपलब्धियों में से एक माना जाता है।
मैक्सवेल के समीकरण विद्युत चुंबकत्व में चार मौलिक समीकरणों का एक सेट हैं ,जो यह  कि विद्युत और चुंबकीय क्षेत्र अंतरिक्ष के माध्यम से किस प्रकार परस्पर व्यवहार करते हैं और फैलते हैं। ये समीकरण 19वीं शताब्दी में जेम्स क्लर्क मैक्सवेल द्वारा अन्वेषित किए गए थे और इन्हें भौतिकी के इतिहास में सबसे महत्वपूर्ण उपलब्धियों में से एक माना जाता है।  


बिजली के लिए गॉस का नियम:
== बिजली के लिए गॉस का नियम ==
 
यह समीकरण इस बारे में बात करता है कि विद्युत आवेश विद्युत क्षेत्र कैसे बनाते हैं। इसमें कहा गया है कि किसी बंद सतह से गुजरने वाला कुल विद्युत प्रवाह (इसे विद्युत क्षेत्र रेखाओं का प्रवाह समझें) उस सतह से घिरे कुल विद्युत आवेश के समानुपाती होता है, जो एक स्थिरांक से विभाजित होता है।
यह समीकरण इस बारे में बात करता है कि विद्युत आवेश विद्युत क्षेत्र कैसे बनाते हैं। इसमें कहा गया है कि किसी बंद सतह से गुजरने वाला कुल विद्युत प्रवाह (इसे विद्युत क्षेत्र रेखाओं का प्रवाह समझें) उस सतह से घिरे कुल विद्युत आवेश के समानुपाती होता है, जो एक स्थिरांक से विभाजित होता है। गणितीय शब्दों में, इसे इस प्रकार लिखा जाता है:


====== गणितीय रूप ======
<math>\oint E \cdot dA = \frac{1}{\epsilon_0} * \int \rho dV</math>
<math>\oint E \cdot dA = \frac{1}{\epsilon_0} * \int \rho dV</math>


यहां, E विद्युत क्षेत्र है, dA बंद सतह पर एक छोटा क्षेत्र तत्व है, ε₀ निर्वात पारगम्यता (एक स्थिरांक) है, ρ विद्युत आवेश घनत्व है, और dV आवेश को घेरने वाला एक छोटा आयतन तत्व है।
यहां, E विद्युत क्षेत्र है, <math>dA</math> बंद सतह पर एक छोटा क्षेत्र तत्व है, <math>\epsilon_{0}</math> निर्वात पारगम्यता (एक स्थिरांक) है, <math>\rho</math> विद्युत आवेश घनत्व है, और <math>dV</math>आवेश को घेरने वाला एक छोटा आयतन तत्व है।
 
चुंबकत्व के लिए गॉस का नियम:


यह समीकरण हमें बताता है कि कोई पृथक चुंबकीय आवेश (विद्युत आवेश के विपरीत) नहीं हैं। किसी बंद सतह से गुजरने वाला कुल चुंबकीय प्रवाह हमेशा शून्य होता है। इसे गणितीय रूप से इस प्रकार व्यक्त किया जाता है:
== चुंबकत्व के लिए गॉस का नियम ==
यह समीकरण हमें बताता है कि कोई पृथक चुंबकीय आवेश (विद्युत आवेश के विपरीत) नहीं हैं। किसी बंद सतह से गुजरने वाला कुल चुंबकीय प्रवाह सर्वथा शून्य होता है।


====== गणितीय रूप ======
<math>\oint B \cdot dA = 0</math>  
<math>\oint B \cdot dA = 0</math>  


यहां, B चुंबकीय क्षेत्र है, और अन्य प्रतीकों का वही अर्थ है जो पिछले समीकरण में है।
यहां,<math>B</math>चुंबकीय क्षेत्र है, और अन्य प्रतीकों का वही अर्थ है जो पिछले समीकरण में है।
 
फैराडे का विद्युत चुम्बकीय प्रेरण का नियम:


यह समीकरण बताता है कि कैसे बदलते चुंबकीय क्षेत्र विद्युत क्षेत्र बनाते हैं। इसमें कहा गया है कि एक बंद लूप में प्रेरित इलेक्ट्रोमोटिव बल (EMF) उस लूप के माध्यम से चुंबकीय प्रवाह के परिवर्तन की नकारात्मक दर के बराबर है। गणितीय रूप से, इसे इस प्रकार लिखा गया है:
== फैराडे का विद्युत चुम्बकीय प्रेरण का नियम ==
यह समीकरण बताता है कि कैसे बदलते चुंबकीय क्षेत्र विद्युत क्षेत्र बनाते हैं। इसमें कहा गया है कि एक बंद लूप में प्रेरित इलेक्ट्रोमोटिव बल (EMF) उस लूप के माध्यम से चुंबकीय प्रवाह के परिवर्तन की नकारात्मक दर के समतुल्य  है।  


====== गणितीय रूप ======
<math>\oint E \cdot dl = -\frac {d(\int B \cdot dA) }  {dt}          </math>  
<math>\oint E \cdot dl = -\frac {d(\int B \cdot dA) }  {dt}          </math>  


यहां, E विद्युत क्षेत्र है, dl लूप का एक छोटा खंड है, B चुंबकीय क्षेत्र है, dA एक छोटा क्षेत्र तत्व है, और dt समय में परिवर्तन है।
यहां, <math>E</math>विद्युत क्षेत्र है, <math>dl</math>लूप का एक छोटा खंड है, <math>B</math>चुंबकीय क्षेत्र है, <math>dA</math>एक छोटा क्षेत्र तत्व है, और<math>dt</math>समय में परिवर्तन है।
 
मैक्सवेल के जोड़ के साथ एम्पीयर का नियम:


यह समीकरण विद्युत धाराओं और बदलते विद्युत क्षेत्रों को चुंबकीय क्षेत्रों से जोड़ता है। इसमें कहा गया है कि एक बंद लूप के चारों ओर चुंबकीय क्षेत्र का परिसंचरण लूप से गुजरने वाली विद्युत धारा के योग और विद्युत विस्थापन क्षेत्र के परिवर्तन की दर (जिसमें विद्युत ध्रुवीकरण से योगदान शामिल है) के समानुपाती होता है। गणितीय रूप से, इसे इस प्रकार लिखा गया है:
== मैक्सवेल के जोड़ के साथ एम्पीयर का नियम ==


====== यह समीकरण विद्युत धाराओं और बदलते विद्युत क्षेत्रों को चुंबकीय क्षेत्रों से जोड़ता है। इसमें कहा गया है कि एक बंद लूप के चारों ओर चुंबकीय क्षेत्र का परिसंचरण लूप से गुजरने वाली विद्युत धारा के योग और विद्युत विस्थापन क्षेत्र के परिवर्तन की दर (जिसमें विद्युत ध्रुवीकरण से योगदान शामिल है) के समानुपाती होता है। गणितीय रूप ======
<math>\oint B \cdot dl = \mu_0 * (I + \epsilon_0 * d(\int E \cdot dA) / dt) </math>  
<math>\oint B \cdot dl = \mu_0 * (I + \epsilon_0 * d(\int E \cdot dA) / dt) </math>  


यहां, B चुंबकीय क्षेत्र है, dl लूप का एक छोटा खंड है, I लूप से गुजरने वाली विद्युत धारा है, μ₀ वैक्यूम पारगम्यता (एक स्थिरांक) है, E विद्युत क्षेत्र है, dA एक छोटा क्षेत्र तत्व है, और dt समय में परिवर्तन है।
यहां, <math>B</math> चुंबकीय क्षेत्र है,<math>dl</math> लूप का एक छोटा खंड है, I लूप से गुजरने वाली विद्युत धारा है, <math>\mu_{0}</math> वैक्यूम पारगम्यता (एक स्थिरांक) है,<math>E</math>विद्युत क्षेत्र है, <math>dA</math>एक छोटा क्षेत्र तत्व है, और<math>dt</math> समय में परिवर्तन है।


== संक्षेप में ==
ये समीकरण विद्युत और चुंबकीय क्षेत्रों के व्यवहार को खूबसूरती से सारांशित करते हैं, और वे विद्युत चुंबकत्व और आधुनिक प्रौद्योगिकियों के विकास की हमारी समझ में महत्वपूर्ण रहे हैं।
ये समीकरण विद्युत और चुंबकीय क्षेत्रों के व्यवहार को खूबसूरती से सारांशित करते हैं, और वे विद्युत चुंबकत्व और आधुनिक प्रौद्योगिकियों के विकास की हमारी समझ में महत्वपूर्ण रहे हैं।
[[Category:वैद्युत चुंबकीय तरंगें]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]]
[[Category:वैद्युत चुंबकीय तरंगें]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]]

Revision as of 09:16, 26 June 2024

Maxwell's equation

मैक्सवेल के समीकरण विद्युत चुंबकत्व में चार मौलिक समीकरणों का एक सेट हैं ,जो यह कि विद्युत और चुंबकीय क्षेत्र अंतरिक्ष के माध्यम से किस प्रकार परस्पर व्यवहार करते हैं और फैलते हैं। ये समीकरण 19वीं शताब्दी में जेम्स क्लर्क मैक्सवेल द्वारा अन्वेषित किए गए थे और इन्हें भौतिकी के इतिहास में सबसे महत्वपूर्ण उपलब्धियों में से एक माना जाता है।

बिजली के लिए गॉस का नियम

यह समीकरण इस बारे में बात करता है कि विद्युत आवेश विद्युत क्षेत्र कैसे बनाते हैं। इसमें कहा गया है कि किसी बंद सतह से गुजरने वाला कुल विद्युत प्रवाह (इसे विद्युत क्षेत्र रेखाओं का प्रवाह समझें) उस सतह से घिरे कुल विद्युत आवेश के समानुपाती होता है, जो एक स्थिरांक से विभाजित होता है।

गणितीय रूप

यहां, E विद्युत क्षेत्र है, बंद सतह पर एक छोटा क्षेत्र तत्व है, निर्वात पारगम्यता (एक स्थिरांक) है, विद्युत आवेश घनत्व है, और आवेश को घेरने वाला एक छोटा आयतन तत्व है।

चुंबकत्व के लिए गॉस का नियम

यह समीकरण हमें बताता है कि कोई पृथक चुंबकीय आवेश (विद्युत आवेश के विपरीत) नहीं हैं। किसी बंद सतह से गुजरने वाला कुल चुंबकीय प्रवाह सर्वथा शून्य होता है।

गणितीय रूप

यहां,चुंबकीय क्षेत्र है, और अन्य प्रतीकों का वही अर्थ है जो पिछले समीकरण में है।

फैराडे का विद्युत चुम्बकीय प्रेरण का नियम

यह समीकरण बताता है कि कैसे बदलते चुंबकीय क्षेत्र विद्युत क्षेत्र बनाते हैं। इसमें कहा गया है कि एक बंद लूप में प्रेरित इलेक्ट्रोमोटिव बल (EMF) उस लूप के माध्यम से चुंबकीय प्रवाह के परिवर्तन की नकारात्मक दर के समतुल्य है।

गणितीय रूप

यहां, विद्युत क्षेत्र है, लूप का एक छोटा खंड है, चुंबकीय क्षेत्र है, एक छोटा क्षेत्र तत्व है, औरसमय में परिवर्तन है।

मैक्सवेल के जोड़ के साथ एम्पीयर का नियम

यह समीकरण विद्युत धाराओं और बदलते विद्युत क्षेत्रों को चुंबकीय क्षेत्रों से जोड़ता है। इसमें कहा गया है कि एक बंद लूप के चारों ओर चुंबकीय क्षेत्र का परिसंचरण लूप से गुजरने वाली विद्युत धारा के योग और विद्युत विस्थापन क्षेत्र के परिवर्तन की दर (जिसमें विद्युत ध्रुवीकरण से योगदान शामिल है) के समानुपाती होता है। गणितीय रूप

यहां, चुंबकीय क्षेत्र है, लूप का एक छोटा खंड है, I लूप से गुजरने वाली विद्युत धारा है, वैक्यूम पारगम्यता (एक स्थिरांक) है,विद्युत क्षेत्र है, एक छोटा क्षेत्र तत्व है, और समय में परिवर्तन है।

संक्षेप में

ये समीकरण विद्युत और चुंबकीय क्षेत्रों के व्यवहार को खूबसूरती से सारांशित करते हैं, और वे विद्युत चुंबकत्व और आधुनिक प्रौद्योगिकियों के विकास की हमारी समझ में महत्वपूर्ण रहे हैं।