क्रांतिक कोण: Difference between revisions

From Vidyalayawiki

Listen

Line 19: Line 19:


== स्नेल के नियम का उपयोग ==
== स्नेल के नियम का उपयोग ==
हम स्नेल के नियम का उपयोग करके क्रांतिक कोण को समझ सकते हैं, जो आपतन और अपवर्तन कोण (i और r) को दो माध्यमों के अपवर्तनांक (n1 और n2) से जोड़ता है।
स्नेल के नियम का उपयोग करके क्रांतिक कोण को समझया जा सकता है, जो आपतन और अपवर्तन कोण (<math>i </math>और <math>r </math>) को दो माध्यमों के अपवर्तनांक (<math>n_1</math>और<math>n_2</math>) से जोड़ता है।


n1​sini=n2​sinr.
<math>n_1\sin i=n_2\sin r,</math>


जब प्रकाश अधिक घने माध्यम (उच्च अपवर्तक सूचकांक, n1n1​) से कम घने माध्यम (कम अपवर्तक सूचकांक, n2n2​) की ओर यात्रा करता है, तो घटना का एक विशिष्ट कोण होता है जिसके परे कुल आंतरिक प्रतिबिंब होता है।
जब प्रकाश अधिक घने माध्यम (उच्च अपवर्तक सूचकांक, <math>n_1</math>​) से कम घने माध्यम (कम अपवर्तक सूचकांक, <math>n_2</math>) की ओर यात्रा करता है, तो घटना का एक विशिष्ट कोण होता है जिसके परे कुल आंतरिक प्रतिबिंब होता है।


== क्रांतिक कोण सूत्र ==
== क्रांतिक कोण सूत्र ==
Line 30: Line 30:
क्रांतिक कोण (<math>c </math>) की गणना समीकरण का उपयोग करके की जा सकती है:
क्रांतिक कोण (<math>c </math>) की गणना समीकरण का उपयोग करके की जा सकती है:


sin⁡C=n2/n1,
<math>\sin c =n_2/n_1,</math>,


यह समीकरण आपको क्रांतिक कोण का मान देता है जिस पर प्रकाश 90 डिग्री के कोण पर अपवर्तित होगा (अर्थात यह दो मीडिया के बीच की सीमा के साथ यात्रा करता है)।
यह समीकरण आपको क्रांतिक कोण का मान देता है जिस पर प्रकाश 90 डिग्री के कोण पर अपवर्तित होगा (अर्थात यह दो मीडिया के बीच की सीमा के साथ यात्रा करता है)।

Revision as of 17:28, 11 July 2024

Critical Angle

क्रांतिक कोण, आपतन कर रही प्रकाश किरण का वह सबसे छोटा कोण है, जिस पर पूर्ण प्रतिबिंब उत्पन्न होता है , इस परिभाषा के समकक्ष प्रकाशीय आपतन की घटना को संदर्भित करती एक परिभाषा, यह भी है की आपंतन कर रही प्रकाश किरणों के मध्य बन रहे कोणों में, क्रांतिक कोण उस सबसे बड़े कोण का परिचायक है, जिसके लिए एक अपवर्तित किरण खींची जा सकती है।

वेग के संदर्भ में क्रांतिक कोण की व्याख्या

निम्न सामान्य वेग वाले माध्यम से उच्च सामान्य वेग वाले माध्यम की ओर एक तरंगाग्र (लाल) का अपवर्तन। तरंगाग्र के आपतित और अपवर्तित खंड एक सामान्य रेखा L ("एंड-ऑन" देखा गया) में मिलते हैं, जो इंटरफ़ेस के साथ वेग यू पर यात्रा करता है।

एकल अपवर्तक सूचकांक से युक्त किसी "आंतरिक" माध्यम से एकल अपवर्तक सूचकांक   युक्त "बाह्य" माध्यम पर आपतित प्रकाश तरंगों के लिए, क्रांतिक कोण द्वारा दिया जाता है, और परिभाषित किया गया है यदि ।  कुछ अन्य प्रकार की तरंगों के लिए, अपवर्तक सूचकांकों को संदर्भित न कर कर ,प्रसार वेग के संदर्भ में सोचना अधिक सुविधाजनक है। वेग के संदर्भ में क्रांतिक कोण की व्याख्या अधिक सामान्य है।

गणितीय स्पष्टीकरण

जब एक तरंगाग्र एक माध्यम से दूसरे माध्यम में अपवर्तित होता है, तो तरंगाग्र के आपतित (आने वाले) और अपवर्तित (बाहर जाने वाले) भाग अपवर्तक सतह (इंटरफ़ेस) पर अभिलंबित रेखा पर मिलते हैं। यदि यह मान लीया जाए कि यह रेखा, जिसे साथ दीये गए चित्र में द्वारा निरूपित किया गया है, सतह पर वेग से चलायमान है, जहां को के अभिलंबित रूप से मापा जाता है (साथ में दीये चित्र को देखें )। घटना और अपवर्तित तरंगाग्रों को सामान्य वेगों (क्रमशः), और के साथ प्रसारित होने देने और उन्हें,अंतरापृष्ठ (इंटरफेस) के सापेक्ष द्वितल कोण (डायहेड्रल ऐंगल) और (क्रमशः) बनाने दें। ज्यामिति से, आपतित तरंग की सामान्य दिशा में का घटक है, ताकि ,इसी प्रकार, प्रत्येक समीकरण को के लिए हल करने और परिणामों को समतुल्य करने पर, तरंगों के लिए अपवर्तन का सामान्य नियम

प्राप्त कीया जा सकता है।

लेकिन दो तलों के बीच का द्विफलकीय कोण, उनके अभिलंबों के बीच का कोण भी होता है। तो आपतित तरंगाग्र के अभिलंब और अंतरापृष्ठ (इंटरफ़ेस) के अभिलंब के बीच का कोण है, जबकि अपवर्तित तरंगाग्र के अभिलंब और अंतरापृष्ठ (इंटरफ़ेस) के अभिलंब के बीच का कोण है; और ऊपर दीये गए सूत्र से यह ज्ञात होता है की कोणों की ज्याएँ संबंधित वेगों के समान अनुपात में हैं ।

प्रकाशिकी में क्रांतिक कोण एक महत्वपूर्ण अवधारणा है जो दो अलग-अलग सामग्रियों के बीच की सीमा पर प्रकाश के व्यवहार के तरीके से संबंधित है। यह आपतन का वह कोण है जिस पर अधिक सघन माध्यम से कम सघन माध्यम में यात्रा करते समय प्रकाश अपवर्तित (मुड़े हुए) से पूरी तरह से आंतरिक रूप से परावर्तित हो जाता है।

स्नेल के नियम का उपयोग

स्नेल के नियम का उपयोग करके क्रांतिक कोण को समझया जा सकता है, जो आपतन और अपवर्तन कोण (और ) को दो माध्यमों के अपवर्तनांक (और) से जोड़ता है।

जब प्रकाश अधिक घने माध्यम (उच्च अपवर्तक सूचकांक, ​) से कम घने माध्यम (कम अपवर्तक सूचकांक, ) की ओर यात्रा करता है, तो घटना का एक विशिष्ट कोण होता है जिसके परे कुल आंतरिक प्रतिबिंब होता है।

क्रांतिक कोण सूत्र

इस परिणाम में "स्नेल का नियम" का रूप लगता तो है, परंतु इसके इस रूप में ये कहीं भी निहित नहीं है कि वेगों का अनुपात स्थिर है या नहीं, न ही आपतन और अपवर्तन के कोणों (जिन्हें ऊपर और से प्रदर्शित कीया गया है) के साथ और से संदर्भित कीया जाता है। हालाँकि, यदि यह माना जाए कि जिस माध्यम में ये तरंगें चलायमान हैं ,उसके गुण समदैशिक (आइसोट्रोपिक) हैं, यानि वेग का परिमाण दिशा पर निर्भर नहीं करता, तो दो और निष्कर्ष निकलते हैं: पहला, दोनों वेग, और इसलिए उनका अनुपात, उनकी चाल वाली दिशा पर निर्भर नहीं है; और दूसरा, तरंग-अभिलम्ब की दिशाएं, किरण दिशाओं के साथ मेल नहीँ खाती हैं, ताकि और ऊपर बताए अनुसार, आपतन और अपवर्तन के कोणों के साथ मेल खाते हैं।

क्रांतिक कोण () की गणना समीकरण का उपयोग करके की जा सकती है:

,

यह समीकरण आपको क्रांतिक कोण का मान देता है जिस पर प्रकाश 90 डिग्री के कोण पर अपवर्तित होगा (अर्थात यह दो मीडिया के बीच की सीमा के साथ यात्रा करता है)।

कुल आंतरिक प्रतिबिंब

जब आपतन कोण क्रांतिक कोण से अधिक होता है, तो कुछ आकर्षक घटित होता है - सारा प्रकाश वापस सघन माध्यम में परावर्तित हो जाता है। इस घटना को पूर्ण आंतरिक परावर्तन कहा जाता है। कोई भी प्रकाश दोनों माध्यमों के बीच की सीमा से होकर नहीं गुजरता; यह सब आंतरिक रूप से प्रतिबिंबित होता है।

व्यावहारिक अनुप्रयोगों

पूर्ण आंतरिक परावर्तन के व्यावहारिक अनुप्रयोग हैं:

   फाइबर ऑप्टिक्स

कुल आंतरिक परावर्तन के कारण प्रकाश सिग्नल ऑप्टिकल फाइबर के अंदर उछलते हैं, जिससे उच्च गति (डेटा ट्रांसमिशन) संभव हो जाता है।

   मृगतृष्णा

पृथ्वी के वायुमंडल में, पूर्ण आंतरिक प्रतिबिंब मृगतृष्णा पैदा कर सकता है, जहां वस्तुएं अपनी वास्तविक स्थिति से विस्थापित दिखाई देती हैं।

   परावर्तक प्रिज्म

विशिष्ट कोण वाले प्रिज्म अपने अंदर प्रकाश को कई बार प्रतिबिंबित कर सकते हैं, जिसका उपयोग दूरबीन और पेरिस्कोप में किया जाता है।

संक्षेप में

क्रांतिक कोण, आपतन का वह कोण है जो पूर्ण आंतरिक परावर्तन की ओर ले जाता है। यह प्रकाश की किरणों के विभिन्न सामग्रियों से गुजरने में उनके आचरण में हो रहे बदलाव को अपवर्तक सूचकांकों की गणना से जोड़ता है और यह समझने में सुविधा करता है कि प्रकाश विभिन्न पदार्थों के बीच की सीमाओं पर कैसे व्यवहार करेगा ।