मध्य-बिंदु प्रमेय: Difference between revisions
No edit summary |
(added content) |
||
Line 1: | Line 1: | ||
ज्यामिति के क्षेत्र में त्रिभुजों के गुणों से संबंधित महत्वपूर्ण प्रमेयों में से एक को मध्य-बिंदु प्रमेय कहा जाता है। | |||
मध्य-बिंदु प्रमेय के सिद्धांत का उपयोग निर्देशांक ज्यामिति में किया जाता है, जिसमें कहा गया है कि रेखाखंड का मध्यबिंदु अंत बिंदुओं का औसत होता है। इस प्रमेय का उपयोग करके समीकरण को हल करने के लिए 'x' और 'y' निर्देशांक ज्ञात होना चाहिए। मध्य-बिंदु प्रमेय कलन और बीजगणित के क्षेत्र में भी उपयोगी है। | |||
== | == मध्य-बिंदु प्रमेय कथन == | ||
मध्यबिंदु प्रमेय कहता है कि "किसी त्रिभुज में उसकी किन्हीं दो भुजाओं के मध्यबिंदु को मिलाने वाला रेखाखंड उसकी तीसरी भुजा के समांतर कहलाता है और तीसरी भुजा की लंबाई का आधा भी होता है।" | |||
[[File:Midpoint theorem.jpg|alt=Fig. 1|thumb| | [[File:Midpoint theorem.jpg|alt=Fig. 1|thumb|चित्र-1]] | ||
चित्र-1 में दर्शाए गए त्रिभुज में <math>E</math> और <math>F</math> त्रिभुज की दो भुजाओं के मध्यबिंदु हैं | |||
<math>EF \parallel BC</math> ,<math>EF=\frac{1}{2}BC</math> and <math>\angle AEF=\angle ABC</math> | <math>EF \parallel BC</math> ,<math>EF=\frac{1}{2}BC</math> and <math>\angle AEF=\angle ABC</math> | ||
इसके साथ, हम निम्नलिखित प्रमेयों पर पहुँचते हैं | |||
''' | '''प्रमेय 1''': त्रिभुज की दो भुजाओं के मध्य-बिंदुओं को मिलाने वाला रेखाखंड तीसरी भुजा के समांतर होता है। | ||
'''प्रमेय 2''': त्रिभुज की एक भुजा के मध्य-बिंदु से होकर दूसरी भुजा के समांतर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है। | |||
''' | |||
[[Category:चतुर्भुज]][[Category:कक्षा-9]][[Category:गणित]] | [[Category:चतुर्भुज]][[Category:कक्षा-9]][[Category:गणित]] |
Revision as of 11:12, 9 September 2024
ज्यामिति के क्षेत्र में त्रिभुजों के गुणों से संबंधित महत्वपूर्ण प्रमेयों में से एक को मध्य-बिंदु प्रमेय कहा जाता है।
मध्य-बिंदु प्रमेय के सिद्धांत का उपयोग निर्देशांक ज्यामिति में किया जाता है, जिसमें कहा गया है कि रेखाखंड का मध्यबिंदु अंत बिंदुओं का औसत होता है। इस प्रमेय का उपयोग करके समीकरण को हल करने के लिए 'x' और 'y' निर्देशांक ज्ञात होना चाहिए। मध्य-बिंदु प्रमेय कलन और बीजगणित के क्षेत्र में भी उपयोगी है।
मध्य-बिंदु प्रमेय कथन
मध्यबिंदु प्रमेय कहता है कि "किसी त्रिभुज में उसकी किन्हीं दो भुजाओं के मध्यबिंदु को मिलाने वाला रेखाखंड उसकी तीसरी भुजा के समांतर कहलाता है और तीसरी भुजा की लंबाई का आधा भी होता है।"
चित्र-1 में दर्शाए गए त्रिभुज में और त्रिभुज की दो भुजाओं के मध्यबिंदु हैं
, and
इसके साथ, हम निम्नलिखित प्रमेयों पर पहुँचते हैं
प्रमेय 1: त्रिभुज की दो भुजाओं के मध्य-बिंदुओं को मिलाने वाला रेखाखंड तीसरी भुजा के समांतर होता है।
प्रमेय 2: त्रिभुज की एक भुजा के मध्य-बिंदु से होकर दूसरी भुजा के समांतर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है।